日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. §2.3.1 雙曲線及其標準方程(1課時)

          [教學目標]

          三、教學過程

          1.橢圓的定義是什么?

          平面內與兩定點F1、F2的距離的和等于常數(shù)(大于|F1F2|)的點的軌跡叫做橢圓.教師要強調條件:(1)平面內;(2)到兩定點F1、F2的距離的和等于常數(shù);(3)常數(shù)2a>|F1F2|.

          試題詳情

          2.橢圓的標準方程是什么?

          試題詳情

          3.雙曲線的定義是什么?

          平面內與兩定點F1、F2的距離的差的絕對值是常數(shù)(小于|F1F2|)的點的軌跡叫做雙曲線.這兩個定點F1、F2叫做雙曲線的焦點,兩個焦點之間的距離叫做焦距.

          試題詳情

          思考:1.若常數(shù)要等于|F1F2|,則圖形是什么?

          試題詳情

                2.若常數(shù)要大于|F1F2|,能畫出圖形嗎?

          試題詳情

          3.定點F1、F2與動點M不在平面上,能否得到雙曲線?(強調“在平面內”)

          試題詳情

          4.|MF1|與|MF2|哪個大?(當M在雙曲線右支上時,|MF1|>|MF2|;當點M在雙曲線左支上時,|MF1|<|MF2|)

           (二)雙曲線的標準方程的推導方程(建――設――顯――代――化)

          試題詳情

          提問:已知橢圓的圖形,是怎么樣建立直角坐標系的?類比求橢圓標準方程的方法由學生來建立直角坐標系.

           

           

           

           

           

           

           (1)建系設點,以F1F2 所在直線為x軸,F(xiàn)1F2的中垂線為y軸建立直角坐標系,設M(x,y)為雙曲線任一點,| F1F2 |=2c(c>0)

          (2)定集合:P={M||MF1||MF2|=±2a}(2a2c

          試題詳情

          (3)寫方程并化簡:2a.*=±2a cx-a2=±a(c2-a2)x2+a2y2=a2(c2-a2)

          試題詳情

          ∵2a<2ca>c>0,∴可令c2-a2=b2(如圖)代入有: =1(a>0,b>0)

          試題詳情

          類比橢圓:設參量的意義:第一、便于寫出雙曲線的標準方程;第二、的關系有明顯的幾何意義.(雙曲線分母a,b僅僅要求正,不要求大小關系,在雙曲線中,a,b,c的關系與橢圓不同)

           類比:寫出焦點在軸上,中心在原點的雙曲線的標準方程

          類比:橢圓的方程可以寫成mx2+ny2=1(m,n為正數(shù),m≠n),雙曲線方程可以寫成什么形式?(mx2+ny2=1,mn<0)

          練習:教材練習1,2(重在說明待定系數(shù)法求雙曲線方程的步驟)

          (三)例題講解

          例1 、方程8kx2-ky2=8

          試題詳情

          (1)若它表示一雙曲線方程,求k的范圍;(2)表示橢圓方程,求k的范圍;(3)與橢圓=1有公共焦點的橢圓,求k的值;

          解:(1)k2>0,k≠0;    (2)k<0;     (3)k=1

          試題詳情

          例2、已知,兩地相距,一炮彈在某處爆炸,在處聽到炮彈爆炸聲的時間比在處遲2s,設聲速為

           (1)爆炸點在什么曲線上?

           (2)求這條曲線的方程。

          試題詳情

          分析:首先要判斷軌跡的形狀,由聲學原理:由聲速及,兩地聽到爆炸聲的時間差,即可知,兩地與爆炸點的距離差為定值.由雙曲線的定義可求出炮彈爆炸點的軌跡方程.

          試題詳情

          (解答:

          思考:有幾個觀測點可以確定爆炸點的位置?(至少三個)

          試題詳情

            四、小結:雙曲線標準方程

          作業(yè):教材P37----習題2.3(1)

          [補充習題] 討論方程(k-1)x2+(2-k)y2=-k2+3k-2表示的曲線

          解:k-1=0即k=1時,方程為y=0表示x軸;

          2-k=0即k=2時,方程為x=0表示y軸

          試題詳情

          當k≠1且k≠2時,方程為+=1

          試題詳情

             當2-k>k-1>0即1<k<時,方程表示焦點在x軸上的橢圓

          試題詳情

          當2-k=k-1>0即k=時,方程為x2+y2=,表示圓

          試題詳情

          當0<2-k<k-1即<k<2時,方程表示焦點在y軸上的橢圓

          當2-k<0<k-1即k>2時,方程表示焦點在y軸上的雙曲線

          當k-1<0<2-k即k<1時,方程表示焦點在x軸上的雙曲線

          [教后感想與作業(yè)情況]

           

           

           

           

           

           

          試題詳情

          §2.3.2 雙曲線的簡單幾何性質(1)――性質

          [教學目標]

          [教學重點]雙曲線的幾何性質及初步運用。

          [教學難點]雙曲線的漸近線。

          試題詳情

          三、情感態(tài)度和價值觀:體會數(shù)形結合和類比的思想方法

          [教學過程] (一)復習提問引入新課:1.橢圓有哪些幾何性質,是如何探討的?2.雙曲線的兩種標準方程是什么?        下面我們類比橢圓的幾何性質來研究它的幾何性質.

          (二)類比聯(lián)想得出性質(范圍、對稱性、頂點)   引導學生完成下列關于橢圓與雙曲線性質的表格

          試題詳情

          試題詳情

          思考:1、從雙曲線的圖形上,還能看出什么范圍?

          試題詳情

          (由雙曲線方程=1(a>0,b>0)得到>0,(-)(+)>0,這樣,對應區(qū)域為

          思考2:關于x軸、y軸、原點對稱的方程如何用式子表示?(一般的曲線C:f(x,y)=0也成立,即:對任意x,y,f(-x,y)=0則曲線C關于y軸對稱;f(x,-y)=0則曲線C關于x軸對稱;f(-x,-y)=0則曲線C關于原點對稱,用之常檢驗曲線的對稱性)

          試題詳情

              (三)漸近線:雙曲線的范圍在以直線為邊界的平面區(qū)域內,那么從x,y的變化趨勢看,雙曲線與直線具有怎樣的關系呢?

          試題詳情

          根據對稱性,可以先研究雙曲線在第一象限的部分與直線的關系。雙曲線在第一象限的部分可寫成:

          試題詳情

          設M(x,y)是其上面的點,N(x,yN)是直線y=上與M相同的橫坐標的點MN=yN-y=-=;當x逐漸增大時,MN逐漸減小,x無限增大,MN接近于零,就是說,雙曲線在第一象限的部分從射線ON的下方逐漸接近于射線ON.在其他象限內也可以證明類似的情況.

          試題詳情

          這樣,我們將稱雙曲線的漸近線。由漸進線可以大致作出雙曲線的圖形。特別的,當a=b時的雙曲線稱等軸雙曲線。

          思考:等軸雙曲線的漸近線是什么?(y=±x)

          試題詳情

           (四)離心率:與橢圓類似,將雙曲線焦距與實軸的比值稱此雙曲線的離心率,e=

          試題詳情

            思考:橢圓的離心率反應橢圓的扁圓程度,雙曲線離心率反應什么呢?(由于==,這樣e越大,就越大雙曲線的開口就越開闊.所以離心率反應了雙曲線的開闊程度)

          試題詳情

          思考:雙曲線=1(a>0,b>0)有哪些基本性質?

          課堂練習:教材P41----練習題

           [小結]雙曲線的基本性質,與橢圓不同的是加了漸近線

          試題詳情

          [作業(yè)]教材P41---習題2.3(2)1,2,3,4,8

          [補充習題]

          試題詳情

          1、經過雙曲線上任一點,作平行于實軸的直線,與漸近線交于兩點,則___________;作平行于虛軸的直線,與漸近線交于兩點,則的距離之積為定值, 。

          試題詳情

          2、求證:由雙曲線的一個焦點向一漸近線作垂線,垂線段長為定值,等于,并求垂足的橫坐標。

          [答案]

          試題詳情

          1、a2,b2

          試題詳情

          2、證明:如圖2,設焦點,漸近線,即,

          試題詳情

          由點到直線的距離公式得:;

          試題詳情

          又過點且與漸近線垂直

          試題詳情

          的直線方程為:,

          試題詳情

          兩方程聯(lián)立解得交點坐標為,顯然該點的橫坐標。

          教后感想與作業(yè)情況

           

           

           

          試題詳情

                                  2.3.2雙曲線性質(2)――離心率和漸近線

          [教學目的]

          [教學難點、重點]漸近線與雙曲線方程間關系

          [教學過程]

          試題詳情

          二、典例分析

             例1、(1)求等軸雙曲線的離心率;(2)一條雙曲線漸近線方程為y=±x,求其離心率;(3)若雙曲線兩條漸近線的夾角為600,求其離心率

          試題詳情

             解:(1)e=

          試題詳情

          (2)雙曲線方程為時,=,e=;方程為時,=,e=;總之,離心率為

          試題詳情

          說明:由漸近線可以確定雙曲線的離心率,如圖,可以看出e==

          試題詳情

          (3)夾角為600,雙曲線可能在夾角范圍內,也有在其補角范圍內,即漸近線與軸的夾角為300或600;e==或e==2

          試題詳情

          變形練習1:“雙曲線離心率為”是“雙曲線為等軸雙曲線”的__________條件(充要)

          試題詳情

          變形練習2:若雙曲線兩條漸近線的夾角為α,求其離心率(

          試題詳情

          例2、P為雙曲線上一點,F(xiàn)是其右焦點,(1)求PF的最值及此時點P的坐標;(2)若集合A={(x,y)| ,a、b>0},集合B={(x,y)|(x-c)2+y2=r2,其中c=,r>0},求A∩B元素的個數(shù)

          試題詳情

          解:(1)設P(x,y),PF2=(x-c)2+y2=x2-2cx+c2+(-1)b2=x2-2cx+a2(x≤-a或x≥a),由圖象知x=a時PF2min=(c-a)2,PFmin=c-a,此時P(a,0);PF無最大值

          (說明:該結論可以先從圖中看出,再進行驗證)

          (2)由(1) PFmin=c-a,故r<c-a時,A∩B有0個元素;r=c-a時,A∩B有1個元素;c-a<r<c+a時,A∩B有2個元素;r=c+a時,A∩B有3個元素;r>c+a時,A∩B有4個元素

          試題詳情

          例3、(1)寫出的漸近線方程,由此說明(λ≠0)的漸近線方程是什么?

          試題詳情

          (2)寫出-=1的漸近線方程,由此說明(λ≠0)的漸近線方程是什么?

          (3)由(1)(2)你能得到什么結論?

          試題詳情

          (4)求與=1有公共漸近線且過點(15,4)的雙曲線方程

          試題詳情

          解:(1)y=±x,

          試題詳情

          (2)y=±x,

          試題詳情

          (3) 雙曲線與漸近線方程具有統(tǒng)一形式,其中λ≠0為雙曲線方程,λ=0時為相應的漸近線方程

          試題詳情

          (4)設雙曲線方程為=λ,將(15,4)代入得λ=8,從而雙曲線方程為=8

          試題詳情

          三、小結:1、由漸近線可以確定雙曲線的離心率

          2、雙曲線與漸近線方程具有統(tǒng)一形式,其中λ≠0為雙曲線方程,λ=0時為相應的漸近線方程

          [補充習題]

          試題詳情

          四、作業(yè):教材P41-----5,6,9,10,11

          1、已知雙曲線的兩個焦點分別是,點為雙曲線上的一點,且,則的面積等于

          試題詳情

          A、0.5          B、1          C、3          D、6

          試題詳情

          2、已知方程表示焦點在軸上的雙曲線,則點

          A、第一象限      B、第二象限      C、第三象限        D、第四象限

          試題詳情

          3、橢圓的離心率為,則雙曲線的離心率為

          試題詳情

          A、        B、        C、        D、

          試題詳情

          4、若焦點在軸上的雙曲線方程是,則其焦距的取值范圍是         

          試題詳情

          5、(1)雙曲線上任意一點到兩條漸進線的距離的乘積是一個定值;(2)經過雙曲線上任一點,作平行于兩漸近線的直線,與漸近線交于兩點,則平行四邊形的面積為定值,求此定值。

           [答案]

          試題詳情

          1、C

          試題詳情

          2、C

          試題詳情

          3、A

          試題詳情

          4、-2<k<1

          試題詳情

          5、(1)設雙曲線的方程為  所以漸近線方程為;的距離  的距離

          試題詳情

          *又在雙曲線上 所以    故*可化為

          試題詳情

          (2)證明:設點到兩漸近線的距離分別為,兩漸進線的夾角為,則有: ,

          試題詳情

          代入上式并整理得:。

          教后感想與作業(yè)情況

          試題詳情


          同步練習冊答案