日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)是奇函數(shù),是偶函數(shù),且其中.

          1)求的表達(dá)式,并求函數(shù)的值域

          2)若關(guān)于的方程在區(qū)間內(nèi)恰有兩個不等實根,求常數(shù)的取值范圍

          【答案】1值域為2

          【解析】

          1)由函數(shù)的奇偶性可得,再結(jié)合條件列方程組求解,進(jìn)而可得,利用函數(shù)單調(diào)性可求得值域;

          2)由題意得方程在區(qū)間內(nèi)恰有兩個不等實根,,則可將方程轉(zhuǎn)化為在區(qū)間內(nèi)有唯一實根,利用函數(shù)單調(diào)性求得函數(shù)的值域,進(jìn)而可得常數(shù)的取值范圍.

          1)由已知①,

          ,得,

          因為是奇函數(shù),是偶函數(shù),

          所以,

          聯(lián)立①②可得,

          ,

          ,,,于是,

          函數(shù)的值域為;

          2)題意即方程在區(qū)間內(nèi)恰有兩個不等實根.

          顯然不是該方程的根,所以令

          ,則原方程可變形為

          易知函數(shù)為偶函數(shù),且在區(qū)間內(nèi)單調(diào)遞增,所以

          且題意轉(zhuǎn)化為方程在區(qū)間內(nèi)有唯一實根(因為每一個在區(qū)間內(nèi)恰有兩個值與之對應(yīng)).

          易知在區(qū)間內(nèi)單調(diào)遞減,

          時,,

          所以(此時每一個,在區(qū)間內(nèi)有且僅有一個值與之對應(yīng)).

          綜上所述,所求常數(shù)的取值范圍是.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示的幾何體是由以等邊三角形為底面的棱柱被平面所截而得,已知平面 的中點,

          (1)求的長;

          (2)求證:面;

          (3)求平面與平面相交所成銳角二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知四棱錐的底面為等腰梯形, , ,垂足為是四棱錐的高。

          )證明:平面 平面;

          )若,60°,求四棱錐的體積。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(題文)已知等差數(shù)列{an}的首項a1≠0,前n項和為Sn,且S4a2=2S3;等比數(shù)列{bn}滿足b1a2b2a4.

          (1)求證:數(shù)列{bn}中的每一項都是數(shù)列{an}中的項;

          (2)若a1=2,設(shè)cn,求數(shù)列{cn}的前n項和Tn;

          (3)在(2)的條件下,若有f(n)=log3Tn,求f(1)+f(2)+…+f(n)的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某地區(qū)積極發(fā)展電商,通過近些年工作的開展在新農(nóng)村建設(shè)和扶貧過程中起到了非常重要的作用,促進(jìn)了農(nóng)民生活富裕,為了更好地了解本地區(qū)某一特色產(chǎn)品的宣傳費 (千元)對銷量 (千件)的影響,統(tǒng)計了近六年的數(shù)據(jù)如下:

          (1)若近6年的宣傳費與銷量呈線性分布,由前5年數(shù)據(jù)求線性回歸直線方程,并寫出的預(yù)測值;

          (2)若利潤與宣傳費的比值不低于20的年份稱為“吉祥年”,在這6個年份中任意選2個年份,求這2個年份均為“吉祥年”的概率

          附:回歸方程的斜率與截距的最小二乘法估計分別為,

          ,其中 , 的平均數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】科學(xué)研究表明:人類對聲音有不的感覺,這與聲音的強度單位:瓦平方米有關(guān)在實際測量時,常用單位:分貝來表示聲音強弱的等級,它與聲音的強度I滿足關(guān)系式:是常數(shù),其中平方米如風(fēng)吹落葉沙沙聲的強度平方米,它的強弱等級分貝.

          已知生活中幾種聲音的強度如表:

          聲音來源

          聲音大小

          風(fēng)吹落葉沙沙聲

          輕聲耳語

          很嘈雜的馬路

          強度平方米

          強弱等級分貝

          10

          m

          90

          am的值

          為了不影響正常的休息和睡眠,聲音的強弱等級一般不能超過50分貝,求此時聲音強度I的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),的圖象兩相鄰對稱軸之間的距離是,若將的圖象向右平移個單位長度,所得圖象對應(yīng)的函數(shù)為奇函數(shù).

          1)求的解析式;

          2)求的對稱軸及單調(diào)增區(qū)間;

          3)若對任意,恒成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在平面直角坐標(biāo)系,已知曲線的參數(shù)方程為,(為參數(shù)),以原點為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系曲線的極坐標(biāo)方程為.

          (1)求曲線的極坐標(biāo)方程及曲線的直角坐標(biāo)方程;

          (2)已知曲線交于兩點,點且垂直于的直線與曲線交于兩點,的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知各項均為正數(shù)數(shù)列的前項和滿足.

          (1)求數(shù)列的通項公式;;

          (2)若數(shù)列滿足,求數(shù)列的前項和.

          查看答案和解析>>

          同步練習(xí)冊答案