【題目】如圖,已知四棱錐的底面為等腰梯形,
∥
,
,垂足為
,
是四棱錐的高。
(Ⅰ)證明:平面
平面
;
(Ⅱ)若,
60°,求四棱錐
的體積。
【答案】(1)由PH是四棱錐P-ABCD的高,得到ACPH,又AC
BD,推出AC
平面PBD.
故平面PAC平面PBD.
(2)
【解析】試題分析:(1)因?yàn)?/span>PH是四棱錐P-ABCD的高。
所以ACPH,又AC
BD,PH,BD都在平面PHD內(nèi),且PH
BD=H.
所以AC平面PBD.
故平面PAC平面PBD.
(2)因?yàn)?/span>ABCD為等腰梯形,ABCD,AC
BD,AB=
.
所以HA=HB=.
因?yàn)?/span>APB=
ADR=600
所以PA=PB=,HD=HC=1.
可得PH=.
等腰梯形ABCD的面積為S=AC x BD = 2+
.
所以四棱錐的體積為V=x(2+
)x
=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)設(shè)函數(shù),試討論函數(shù)
的單調(diào)性;
(Ⅱ)設(shè)函數(shù)
,求函數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線,
,則下列結(jié)論正確的是( )
A. 把上所有的點(diǎn)向右平移
個(gè)單位長(zhǎng)度,再把所有圖象上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的
倍(縱坐標(biāo)不變),得到曲線
B. 把上所有點(diǎn)向左平移
個(gè)單位長(zhǎng)度,再把所得圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的3倍(縱坐標(biāo)不變),得到曲線
C. 把上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的
倍(縱坐標(biāo)不變),再把所得圖象上所有的點(diǎn)向左平移
個(gè)單位長(zhǎng)度,得到曲線
D. 把上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的3倍(縱坐標(biāo)不變),再把所得圖象上所有的點(diǎn)向左平移
個(gè)單位長(zhǎng)度,得到曲線
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形
中,
于
,
.將
沿
折起至
,使得平面
平面
(如圖2),
為線段
上一點(diǎn).
圖1 圖2
(Ⅰ)求證: ;
(Ⅱ)若為線段
中點(diǎn),求多面體
與多面體
的體積之比;
(Ⅲ)是否存在一點(diǎn),使得
平面
?若存在,求
的長(zhǎng).若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為
,且過(guò)點(diǎn)
.
(1)求橢圓的方程;
(2)過(guò)橢圓左焦點(diǎn)的直線
與橢圓
交于
兩點(diǎn),直線
過(guò)坐標(biāo)原點(diǎn)且直線
與
的斜率互為相反數(shù),直線
與橢圓交于
兩點(diǎn)且均不與點(diǎn)
重合,設(shè)直線
的斜率為
,直線
的斜率為
.證明:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】石嘴山市第三中學(xué)高三年級(jí)統(tǒng)計(jì)學(xué)生的最近20次數(shù)學(xué)周測(cè)成績(jī),現(xiàn)有甲、乙兩位同學(xué)的20次成績(jī)?nèi)缜o葉圖所示:
(1)根據(jù)莖葉圖求甲、乙兩位同學(xué)成績(jī)的中位數(shù),并將同學(xué)乙的成績(jī)的頻率分布直方圖填充完整;
(2)現(xiàn)從甲、乙兩位同學(xué)的不低于140分的成績(jī)中任意選出2個(gè)成績(jī),記事件為“其中2個(gè)成績(jī)分別屬于不同的同學(xué)”,求事件
發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),圓
,過(guò)點(diǎn)
的動(dòng)直線
與圓
交于
兩點(diǎn),線段
的中點(diǎn)為
,
為坐標(biāo)原點(diǎn).
(Ⅰ)求的軌跡方程;
(Ⅱ)當(dāng)(
不重合)時(shí),求
的方程及
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是奇函數(shù),
是偶函數(shù)
,且其中
.
(1)求和
的表達(dá)式,并求函數(shù)
的值域
(2)若關(guān)于的方程
在區(qū)間
內(nèi)恰有兩個(gè)不等實(shí)根,求常數(shù)
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將直線2x-y+λ=0沿x軸向左平移1個(gè)單位,所得直線與圓x2+y2+2x-4y=0相切,則實(shí)數(shù)λ的值為( )
A.-3或7B.-2或8
C.0或10D.1或11
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com