日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】(題文)已知等差數(shù)列{an}的首項a1≠0,前n項和為Sn,且S4a2=2S3;等比數(shù)列{bn}滿足b1a2,b2a4.

          (1)求證:數(shù)列{bn}中的每一項都是數(shù)列{an}中的項;

          (2)若a1=2,設(shè)cn,求數(shù)列{cn}的前n項和Tn;

          (3)在(2)的條件下,若有f(n)=log3Tn,求f(1)+f(2)+…+f(n)的最大值.

          【答案】(1)見解析.(2)-1.

          【解析】試題分析:

          (1)由題意可得在等差數(shù)列{an},anna1,根據(jù)b12a1b24a1可得等比數(shù)列的公比為q2,bn2n·a1,由于2nN*故數(shù)列{bn}中的每一項都是{an}中的項.(2)由(1)可得故用列項相消法求和即可.(3結(jié)合2可得f(n)log3Tnlog3,由對數(shù)的運算性質(zhì)可得f(1)f(2)f(n) ,,作差可得單調(diào)遞減,從而可得所求最值

          試題解析:

          (1)設(shè)等差數(shù)列{an}的公差為d

          S4a22S3,得4a16da1d6a16d,

          a1d,

          ana1(n1)dna1

          由題意得b12a1,b24a1

          等比數(shù)列{bn}的公比q2,

          bn2a1·2n12n·a1,

          2nN*,

          ∴數(shù)列{bn}中的每一項都是{an}中的項.

          (2)a12時,bn2n1

          Tnc1c2cn

          2[()()()]2()

          (3)由題意得f(n)log3Tnlog3,

          f(1)f(2)f(n)log3log3log3log3(··…·)

          ,

          ,

          ,單調(diào)遞減,

          f(1)f(2)f(n)的最大值為-1

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】某同學用“五點法”畫函數(shù)fx)=Asinωx+φ)(ω0|φ|)在某一個周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如表:

          ωx+φ

          0

          π

          2π

          x

          Asinωx+φ

          0

          5

          5

          0

          1)請將上表數(shù)據(jù)補充完整,并直接寫出函數(shù)fx)的解析式;

          2)將yfx)圖象上所有點向左平移θθ0)個單位長度,得到ygx)的圖象.ygx)圖象的一個對稱中心為(0),求θ的最小值.

          3)若,求的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在梯形中, , .將沿折起至,使得平面平面(如圖2), 為線段上一點.

          圖1 圖2

          (Ⅰ)求證: ;

          (Ⅱ)若為線段中點,求多面體與多面體的體積之比;

          (Ⅲ)是否存在一點,使得平面?若存在,求的長.若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】石嘴山市第三中學高三年級統(tǒng)計學生的最近20次數(shù)學周測成績,現(xiàn)有甲、乙兩位同學的20次成績?nèi)缜o葉圖所示:

          (1)根據(jù)莖葉圖求甲、乙兩位同學成績的中位數(shù),并將同學乙的成績的頻率分布直方圖填充完整;

          (2)現(xiàn)從甲、乙兩位同學的不低于140分的成績中任意選出2個成績,記事件為“其中2個成績分別屬于不同的同學”,求事件發(fā)生的概率.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知點,圓,過點的動直線與圓交于兩點,線段的中點為,為坐標原點.

          (Ⅰ)求的軌跡方程;

          (Ⅱ)當不重合)時,求的方程及的面積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知是橢圓)的左、右焦點,過軸的垂線與交于、

          兩點, 軸交于點, ,且, 為坐標原點.

          (1)求的方程;

          (2)設(shè)為橢圓上任一異于頂點的點, 的上、下頂點,直線、分別交軸于點.若直線與過點、的圓切于點.試問: 是否為定值?若是,求出該定值;若不是,請說明理由。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設(shè)是奇函數(shù),是偶函數(shù),且其中.

          1)求的表達式,并求函數(shù)的值域

          2)若關(guān)于的方程在區(qū)間內(nèi)恰有兩個不等實根,求常數(shù)的取值范圍

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓C 的離心率與雙曲線的離心率互為倒數(shù),且過點

          1)求橢圓C的方程;

          2)過作兩條直線與圓相切且分別交橢圓于M、N兩點.

          求證:直線MN的斜率為定值;

          MON面積的最大值(其中O為坐標原點).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設(shè)等差數(shù)列的前項和為,且是常數(shù),),.

          (1)求的值及數(shù)列的通項公式;

          (2)設(shè),數(shù)列的前項和為,證明:.

          查看答案和解析>>

          同步練習冊答案