日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知斜率為1的直線l過橢圓
          x2
          4
          +y2=1
          的右焦點(diǎn)F2
          (1)求直線l的方程;
          (2)若l與橢圓交于點(diǎn)A、B兩點(diǎn),F(xiàn)1為橢圓左焦點(diǎn),求SF1AB
          (1)∵由已知c2=4-1=3
          c=
          3

          F2(
          3
          ,0)

          ∴直線l為:y=x-
          3

          (2)聯(lián)立直線l與橢圓方程:
          y=x-
          3
          x2
          4
          +y2=1
          ,
          化簡得:
          5
          4
          x2-2
          3
          x+2=0

          設(shè)A(x1,y1),B(x2,y2).
          x1+x2=
          2
          3
          5
          4
          =
          8
          3
          5
          ,x1x2=
          2
          5
          4
          =
          8
          5

          |x1-x2|=
          (x1+x2)2-4x1x2
          =
          4
          2
          5

          |y1-y2|=k|x1-x2|=
          4
          2
          5

          SF1AB=
          1
          2
          |F1F2|•|y1-y2|=
          1
          2
          •2
          3
          4
          2
          5
          =
          4
          6
          5
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,已知拋物線方程為y2=8x.直線l1過拋物線的焦點(diǎn)F,且傾斜角為45°,直線l1與拋物線相交于C、D兩點(diǎn),O為原點(diǎn).
          (1)寫出直線l1方程
          (2)求CD的長度.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的兩個焦點(diǎn)為F1,F(xiàn)2,點(diǎn)P在橢圓C上,且PF1⊥F1F2,|PF1|=
          4
          3
          ,|PF2|=
          14
          3

          (Ⅰ)求橢圓C的方程;
          (Ⅱ)若直線l過點(diǎn)M(-2,1),交橢圓C于A,B兩點(diǎn),且M恰是A,B中點(diǎn),求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知直線l:y=3x+2過拋物線y=ax2(a>0)的焦點(diǎn).
          (1)求拋物線方程;
          (2)設(shè)拋物線的一條切線l1,若l1l,求切點(diǎn)坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓E:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          ,過右焦點(diǎn)F且斜率為
          2
          的直線l交橢圓E于兩點(diǎn)A,B,若以原點(diǎn)為圓心,
          6
          3
          為半徑的圓與直線l相切
          (1)求焦點(diǎn)F的坐標(biāo);
          (2)以O(shè)A,OB為鄰邊的平行四邊形OACB中,頂點(diǎn)C也在橢圓E上,求橢圓E的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          橢圓C1
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          與拋物線C2:x2=2py(p>0)的一個交點(diǎn)為M.拋物線C2在點(diǎn)M處的切線過橢圓C1的右焦點(diǎn)F.
          (1)若M(2,
          2
          5
          5
          )
          ,求C1和C2的標(biāo)準(zhǔn)方程;
          (II)若b=1,求p關(guān)于a的函數(shù)表達(dá)式p=f(a).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          附加題:已知半橢圓
          x2
          a2
          +
          y2
          b2
          =1(x≥0)
          與半橢圓
          y2
          b2
          +
          x2
          c2
          =1(x≤0)
          組成的曲線稱為“果圓”,其中a2=b2+c2,a>b>c>0,F(xiàn)0、F1、F2是對應(yīng)的焦點(diǎn).
          (1)(文)若三角形F0F1F2是邊長為1的等邊三角形,求“果圓”的方程.
          (2)(理)當(dāng)|A1A2|>|B1B2|時,求
          b
          a
          的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)點(diǎn)P在曲線y=x2上,從原點(diǎn)向A(2,4)移動,如果直線OP,曲線y=x2及直線x=2所圍成的面積分別記為S1、S2
          (Ⅰ)當(dāng)S1=S2時,求點(diǎn)P的坐標(biāo);
          (Ⅱ)當(dāng)S1+S2有最小值時,求點(diǎn)P的坐標(biāo)和最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知拋物線y2=8x與橢圓
          x2
          a2
          +
          y2
          b2
          =1有公共焦點(diǎn)F,且橢圓過點(diǎn)D(-
          2
          ,
          3
          ).
          (1)求橢圓方程;
          (2)點(diǎn)A、B是橢圓的上下頂點(diǎn),點(diǎn)C為右頂點(diǎn),記過點(diǎn)A、B、C的圓為⊙M,過點(diǎn)D作⊙M的切線l,求直線l的方程;
          (3)過點(diǎn)A作互相垂直的兩條直線分別交橢圓于點(diǎn)P、Q,則直線PQ是否經(jīng)過定點(diǎn),若是,求出該點(diǎn)坐標(biāo),若不經(jīng)過,說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案