已知三個實(shí)數(shù)a、b、c成等差數(shù)列,且它們的和為12,又a+2、b+2、c+5成等比數(shù)列,求a、b、c的值。
a1=1,b1=4,c1=7; a2=10,b2=4,c2=-2。
解析試題分析:解:因?yàn)槿齻實(shí)數(shù)a、b、c成等差數(shù)列,且它們的和為12,故設(shè)a=4-d,b=4,c=4+d,(3分)則由a+2,b+2,c+5成等比數(shù)列,故有(6-d),,6,9+d,成等比數(shù)列,可知36=(6-d)(9+d)
可得(n解得d=3,d=-6,-----(9分),所以a=1,b=4,c=7.或者a=10,b=4,c=-2------(12分
考點(diǎn):等差數(shù)列,等比數(shù)列
點(diǎn)評:考查了等差數(shù)列和等比數(shù)列的性質(zhì)的運(yùn)用,屬于基礎(chǔ)題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列是等差數(shù)列,且
,
.
⑴ 求數(shù)列的通項(xiàng)公式;
⑵ 令,求數(shù)列
的前
項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的首項(xiàng)為
,其前
項(xiàng)和為
,且對任意正整數(shù)
有:
、
、
成等差數(shù)列.
(1)求證:數(shù)列成等比數(shù)列;
(2)求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等比數(shù)列中,已知
,且公比為正整數(shù).
(1) 求數(shù)列的通項(xiàng)公式;(5分)
(2) 求數(shù)列的前
項(xiàng)和.(5分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題14分)
已知等比數(shù)列滿足
,且
是
,
的等差中項(xiàng).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,
,求使
成立的正整數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是公差不為零的等差數(shù)列,
成等比數(shù)列.
求數(shù)列
的通項(xiàng);
求數(shù)列
的前n項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
已知數(shù)列的相鄰兩項(xiàng)
是關(guān)于
的方程
的兩根,且
(1)求證:數(shù)列是等比數(shù)列;
(2)求數(shù)列的前
項(xiàng)和
;
(3)設(shè)函數(shù)若
對任意的
都成立,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a3=5,S15="225."
(1)求數(shù)列{an}的通項(xiàng)an;
(2)設(shè)bn=+2n,求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)二次方程,
有兩根
和
,且滿足
,
(1)試用表示
;
(2)證明是等比數(shù)列;
(3)設(shè),
,
為
的前n項(xiàng)和,證明
,(
)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com