日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某校在本校任選了一個(gè)班級(jí),對(duì)全班50名學(xué)生進(jìn)行了作業(yè)量的調(diào)查,根據(jù)調(diào)查結(jié)果統(tǒng)計(jì)后,得到如下的列聯(lián)表,已知在這50人中隨機(jī)抽取2人,這2人都“認(rèn)為作業(yè)量大”的概率為.

          認(rèn)為作業(yè)量大

          認(rèn)為作業(yè)量不大

          合計(jì)

          男生

          18

          女生

          17

          合計(jì)

          50

          (Ⅰ)請(qǐng)完成上面的列聯(lián)表;

          (Ⅱ)根據(jù)列聯(lián)表的數(shù)據(jù),能否有的把握認(rèn)為“認(rèn)為作業(yè)量大”與“性別”有關(guān)?

          (Ⅲ)若視頻率為概率,在全校隨機(jī)抽取4人,其中“認(rèn)為作業(yè)量大”的人數(shù)記為,求的分布列及數(shù)學(xué)期望.

          附表:

          0.100

          0.050

          0.025

          0.010

          0.001

          2.706

          3.841

          5.024

          6.635

          10.828

          附:

          【答案】(Ⅰ)見解析(Ⅱ)有的把握認(rèn)為“認(rèn)為作業(yè)量大”與“性別”有關(guān)(Ⅲ)見解析

          【解析】分析:(1)先設(shè)認(rèn)為作業(yè)量大的共有個(gè)人,再求出x的值,完成列聯(lián)表.(2)先求出,再判斷是否有的把握認(rèn)為“認(rèn)為作業(yè)量大”與“性別”有關(guān).(3)利用二項(xiàng)分布求的分布列及數(shù)學(xué)期望.

          詳解:(Ⅰ)設(shè)認(rèn)為作業(yè)量大的共有個(gè)人,

          ,

          解得(舍去);

          認(rèn)為作業(yè)量大

          認(rèn)為作業(yè)量不大

          合計(jì)

          男生

          18

          8

          26

          女生

          7

          17

          24

          合計(jì)

          25

          25

          50

          (Ⅱ)根據(jù)列聯(lián)表中的數(shù)據(jù),得

          .

          因此有的把握認(rèn)為“認(rèn)為作業(yè)量大”與“性別”有關(guān).

          (Ⅲ)的可能取值為0,1,2,3,4.

          由(Ⅰ)可知,在全校隨機(jī)抽取1人,“認(rèn)為作業(yè)量大”的概率為.

          由題意可知.

          所以 .

          所以的分布列為

          0

          1

          2

          3

          4

          (或).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知點(diǎn)F(1,0),點(diǎn)A是直線l1:x=﹣1上的動(dòng)點(diǎn),過(guò)A作直線l2 , l1⊥l2 , 線段AF的垂直平分線與l2交于點(diǎn)P.
          (Ⅰ)求點(diǎn)P的軌跡C的方程;
          (Ⅱ)若點(diǎn)M,N是直線l1上兩個(gè)不同的點(diǎn),且△PMN的內(nèi)切圓方程為x2+y2=1,直線PF的斜率為k,求 的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在銳角中,已知,若點(diǎn)是線段上一點(diǎn)(不含端點(diǎn)),過(guò),

          (1)若外接圓的直徑長(zhǎng)為,求的值;

          (2)求的最小值

          (3)問(wèn)點(diǎn)在何處時(shí),的面積最大?最大值為多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)

          1)若曲線在點(diǎn)處的切線為, 軸的交點(diǎn)坐標(biāo)為,求的值;

          2)討論的單調(diào)性.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)= ln(a x)+bx在點(diǎn)(1,f(1))處的切線是y=0;

          (I)求函數(shù)f(x)的極值;

          (II)當(dāng)恒成立時(shí),求實(shí)數(shù)m的取值范圍(e為自然對(duì)數(shù)的底數(shù))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在圓心角為,半徑為的扇形鐵皮上截取一塊矩形材料,其中點(diǎn)為圓心,點(diǎn)在圓弧上,點(diǎn)在兩半徑上,現(xiàn)將此矩形鐵皮卷成一個(gè)以為母線的圓柱形鐵皮罐的側(cè)面(不計(jì)剪裁和拼接損耗),設(shè)矩形的邊長(zhǎng),圓柱形鐵皮罐的容積為.

          (1)求圓柱形鐵皮罐的容積關(guān)于的函數(shù)解析式,并指出該函數(shù)的定義域;

          (2)當(dāng)為何值時(shí),才使做出的圓柱形鐵皮罐的容積最大?最大容積是多少? (圓柱體積公式:,為圓柱的底面枳,為圓柱的高)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】將參加數(shù)學(xué)競(jìng)賽決賽的500名同學(xué)編號(hào)為:001,002,…,500,采用系統(tǒng)抽樣的方法抽取一個(gè)容量為50的樣本,且隨機(jī)抽的號(hào)碼為003,這500名學(xué)生分別在三個(gè)考點(diǎn)考試,從001到200在第一考點(diǎn),從201到355在第二考點(diǎn),從356到500在第三考點(diǎn),則第二考點(diǎn)被抽中的人數(shù)為(
          A.14
          B.15
          C.16
          D.17

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知曲線C的極坐標(biāo)方程為ρ=6sinθ,以極點(diǎn)O為原點(diǎn),極軸為x軸的非負(fù)半軸建立直角坐標(biāo)系,直線l的參數(shù)方程為 (t為參數(shù)).
          (1)求曲線C的直角坐標(biāo)方程及直線l的普通方程;
          (2)直線l與曲線C交于B,D兩點(diǎn),當(dāng)|BD|取到最小值時(shí),求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,AB是⊙O的直徑,C是圓周上不同于A,B的任意一點(diǎn),PA⊥平面ABC,則四面體P-ABC的四個(gè)面中,直角三角形的個(gè)數(shù)有(  )

          A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案