【題目】已知函數(shù),其中
,
是自然對數(shù)的底數(shù).
(1)當(dāng)時(shí),求曲線
在
處的切線方程;
(2)求函數(shù)的單調(diào)減區(qū)間;
(3)若在
恒成立,求
的取值范圍.
【答案】(1)(2)當(dāng)
時(shí),
無單調(diào)減區(qū)間;當(dāng)
時(shí),
的單調(diào)減區(qū)間是
;當(dāng)
時(shí),
的單調(diào)減區(qū)間是
.(3)
【解析】試題分析:(1)先對函數(shù)解析式進(jìn)行求導(dǎo),再借助導(dǎo)數(shù)的幾何意義求出切線的斜率,運(yùn)用點(diǎn)斜式求出切線方程;(2)先對函數(shù)的解析式進(jìn)行求導(dǎo),然后借助導(dǎo)函數(shù)的值的符號(hào)與函數(shù)單調(diào)性之間的關(guān)系進(jìn)行分類分析探求;(3)先不等式進(jìn)行等價(jià)轉(zhuǎn)化,然后運(yùn)用導(dǎo)數(shù)知識(shí)及分類整合的數(shù)學(xué)思想探求函數(shù)的極值與最值,進(jìn)而分析推證不等式的成立求出參數(shù)的取值范圍。
解:(1)因?yàn)?/span>,所以
.
因?yàn)?/span>,所以
.
所以切線方程為.
(2) 因?yàn)?/span>,
當(dāng)時(shí),
,所以
無單調(diào)減區(qū)間.
當(dāng)即
時(shí),列表如下:
所以的單調(diào)減區(qū)間是
.
當(dāng)即
時(shí),
,列表如下:
所以的單調(diào)減區(qū)間是
.
綜上,當(dāng)時(shí),
無單調(diào)減區(qū)間;
當(dāng)時(shí),
的單調(diào)減區(qū)間是
;
當(dāng)時(shí),
的單調(diào)減區(qū)間是
.
(3) .
當(dāng)時(shí),由(2)可得,
為
上單調(diào)增函數(shù),
所以在區(qū)間
上的最大值
,符合題意.
當(dāng)時(shí),由(2)可得,要使
在區(qū)間
上恒成立,
只需,
,解得
.
當(dāng)時(shí),可得
,
.
設(shè),則
,列表如下:
所以,可得
恒成立,所以
.
當(dāng)時(shí),可得
,無解.
綜上, 的取值范圍是
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)圓形波浪實(shí)驗(yàn)水池的中心有三個(gè)振動(dòng)源,假如不計(jì)其它因素,在t秒內(nèi),它們引發(fā)的水面波動(dòng)可分別由函數(shù) 和
描述,如果兩個(gè)振動(dòng)源同時(shí)啟動(dòng),則水面波動(dòng)由兩個(gè)函數(shù)的和表達(dá),在某一時(shí)刻使這三個(gè)振動(dòng)源同時(shí)開始工作,那么,原本平靜的水面將呈現(xiàn)的狀態(tài)是( )
A.仍保持平靜
B.不斷波動(dòng)
C.周期性保持平靜
D.周期性保持波動(dòng)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體ABCD﹣A1B1C1D1 , O是底ABCD對角線的交點(diǎn).求證:
(1)C1O∥面AB1D1;
(2)面BDC1∥面AB1D1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某生態(tài)園將一塊三角形地的一角
開辟為水果園,已知角
為
,
的長度均大于200米,現(xiàn)在邊界
處建圍墻,在
處圍竹籬笆.
(1)若圍墻、
總長度為200米,如何可使得三角形地塊
面積最大?
(2)已知竹籬笆長為米,
段圍墻高1米,
段圍墻高2米,造價(jià)均為每平方米100元,求圍墻總造價(jià)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄AM與圓C1:(x+4)2+y2=2外切,與圓C2:(x﹣4)2+y2=2內(nèi)切,求動(dòng)圓圓心M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,設(shè)向量,
,其中
為
的兩個(gè)內(nèi)角.
(1)若,求證:
為直角;
(2)若,求證:
為銳角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(n)=n2cos(nπ),且an=f(n)+f(n+1),則a1+a2+a3+…+a100=( )
A.0
B.﹣100
C.100
D.10200
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨機(jī)抽取一個(gè)年份,對西安市該年4月份的天氣情況進(jìn)行統(tǒng)計(jì),結(jié)果如下:
(Ⅰ)在4月份任取一天,估計(jì)西安市在該天不下雨的概率;
(Ⅱ)西安市某學(xué)校擬從4月份的一個(gè)晴天開始舉行連續(xù)2天的運(yùn)動(dòng)會(huì),估計(jì)運(yùn)動(dòng)會(huì)期間不下雨的概率.
日期 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
天氣 | 晴 | 雨 | 陰 | 陰 | 陰 | 雨 | 陰 | 晴 | 晴 | 晴 | 陰 | 晴 | 晴 | 晴 | 晴 |
日期 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
天氣 | 晴 | 陰 | 雨 | 陰 | 陰 | 晴 | 陰 | 晴 | 晴 | 晴 | 陰 | 晴 | 晴 | 晴 | 雨 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面四邊形ABCD中,AD=1,CD=2,AC= .
(1)求cos∠CAD的值;
(2)若cos∠BAD=﹣ ,sin∠CBA=
,求BC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com