日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在三棱錐中,,,的中點(diǎn),的中點(diǎn),且為正三角形.

          (1)求證:平面
          (2)若,,求點(diǎn)到平面的距離.
          (1)詳見解析;(2).

          試題分析:(1)由等腰三角形三線合一得到,由中位線得到,從而得到,利用并結(jié)合直線與平面垂直的判定定理證明平面,從而得到,再結(jié)合以及直線與平面垂直的判定定理證明平面;(2)解法一是利用(1)中的條件得到平面,以點(diǎn)為頂點(diǎn),為底面計(jì)算三棱錐的體積,然后更換頂點(diǎn),變成以點(diǎn)為頂點(diǎn),為底面來計(jì)算三棱錐,利用等體積法從而計(jì)算三棱錐的高,即點(diǎn)到平面的距離;解法二是作或其延長線于點(diǎn),然后證明平面,從而得到的長度為點(diǎn)到平面的距離,進(jìn)而計(jì)算的長度即可.
          試題解析:(1)證明:在正中,的中點(diǎn),所以
          因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031427708381.png" style="vertical-align:middle;" />是的中點(diǎn),的中點(diǎn),所以,故
          ,、平面,
          所以平面
          因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031428690434.png" style="vertical-align:middle;" />平面,所以,
          ,,、平面,
          所以平面;

          (2)解法1:設(shè)點(diǎn)到平面的距離為,
          因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031427848457.png" style="vertical-align:middle;" />,的中點(diǎn),所以,
          因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031427770570.png" style="vertical-align:middle;" />為正三角形,所以,
          因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031427832483.png" style="vertical-align:middle;" />,,所以,
          所以
          因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240314290651348.png" style="vertical-align:middle;" />,
          由(1)知,所以,
          中,,
          所以.
          因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031429143742.png" style="vertical-align:middle;" />,所以,
          ,所以
          故點(diǎn)到平面的距離為
          解法2:過點(diǎn)作直線的垂線,交的延長線于點(diǎn),

          由(1)知,平面,
          所以平面
          因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031429658422.png" style="vertical-align:middle;" />平面,所以
          因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031429704683.png" style="vertical-align:middle;" />,所以平面
          所以為點(diǎn)到平面的距離.
          因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031427848457.png" style="vertical-align:middle;" />,的中點(diǎn),所以
          因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031427770570.png" style="vertical-align:middle;" />為正三角形,所以
          因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031427739306.png" style="vertical-align:middle;" />為的中點(diǎn),所以
          以下給出兩種求的方法:
          方法1:在△中,過點(diǎn)的垂線,垂足為點(diǎn),
          . 因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240314300161061.png" style="vertical-align:middle;" />,
          所以.
          方法2:在中,.         ①,
          中,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031427832483.png" style="vertical-align:middle;" />,
          所以,
          .                         ②,
          由①,②解得.故點(diǎn)到平面的距離為.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在直三棱柱(側(cè)棱和底面垂直的棱柱)中,平面側(cè)面,,,且滿足.

          (1)求證:
          (2)求點(diǎn)的距離;
          (3)求二面角的平面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在直三棱柱中,,是棱上的一點(diǎn),的延長線與的延長線的交點(diǎn),且∥平面

          (1)求證:;
          (2)求二面角的平面角的余弦值;
          (3)求點(diǎn)到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在四棱柱中,已知平面平面,.

          (1)求證:
          (2)若為棱的中點(diǎn),求證:平面.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          四棱錐底面是平行四邊形,面,,,分別為的中點(diǎn).

          (1)求證:
          (2)求證:
          (3)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分14分)如圖,在四面體A?BCD中,AD^平面BCD,BC^CD,AD=2,BD=2.M是AD的中點(diǎn).

          (1)證明:平面ABC平面ADC;
          (2)若ÐBDC=60°,求二面角C?BM?D的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在三棱錐中,側(cè)面與底面垂直, 分別是的中點(diǎn),,,.

          (Ⅰ)求證:平面;
          (Ⅱ)若點(diǎn)為線段的中點(diǎn),求異面直線所成角的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知m、n是兩條不同的直線,α、β是兩個不同的平面,給出下列命題:
          ①若,,則;②若,,且,則;③若,,則; ④若,,且,則.其中正確命題的序號是(    )
          A.①④ B.②③ C.②④D.①③

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知是異面直線,直線∥直線,那么(  )
          A.一定是異面直線B.一定是相交直線
          C.不可能是平行直線D.不可能是相交直線

          查看答案和解析>>

          同步練習(xí)冊答案