已知函數(shù),當(dāng)
時(shí),取得極大值
;當(dāng)
時(shí),取得極小值.
求、
、
的值;
求在
處的切線方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如下圖,過(guò)曲線:
上一點(diǎn)
作曲線
的切線
交
軸于點(diǎn)
,又過(guò)
作
軸的垂線交曲線
于點(diǎn)
,然后再過(guò)
作曲線
的切線
交
軸于點(diǎn)
,又過(guò)
作
軸的垂線交曲線
于點(diǎn)
,
,以此類推,過(guò)點(diǎn)
的切線
與
軸相交于點(diǎn)
,再過(guò)點(diǎn)
作
軸的垂線交曲線
于點(diǎn)
(
N
).
(1) 求、
及數(shù)列
的通項(xiàng)公式;(2) 設(shè)曲線
與切線
及直線
所圍成的圖形面積為
,求
的表達(dá)式; (3) 在滿足(2)的條件下, 若數(shù)列
的前
項(xiàng)和為
,求證:
N
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(I)若a=-1,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45o,對(duì)于任意的t
[1,2],函數(shù)
是
的導(dǎo)函數(shù))在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍;
(Ⅲ)求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
(Ⅰ)如果函數(shù)的單調(diào)遞減區(qū)間為
,求函數(shù)
的解析式;
(Ⅱ)對(duì)一切的,
恒成立,求實(shí)數(shù)
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)求的單調(diào)遞增區(qū)間;
(2)若在
處的切線與直線
垂直,求證:對(duì)任意
,都有
;
(3)若,對(duì)于任意
,都有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)在
與
時(shí)都取得極值
求a、b的值;
(2)函數(shù)f(x)的極值;
(3)若,方程
恰好有三個(gè)根,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
且
.
(Ⅰ)當(dāng)時(shí),求在點(diǎn)
處的切線方程;
(Ⅱ)若函數(shù)在區(qū)間
上為單調(diào)函數(shù),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,其中
是自然常數(shù),
(1)討論時(shí),
的單調(diào)性、極值;
(2)是否存在實(shí)數(shù),使
的最小值是3,若存在,求出
的值;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com