日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如下圖,過曲線上一點作曲線的切線軸于點,又過軸的垂線交曲線于點,然后再過作曲線的切線軸于點,又過軸的垂線交曲線于點,,以此類推,過點的切線 與軸相交于點,再過點軸的垂線交曲線于點N).
          (1) 求及數(shù)列的通項公式;(2) 設(shè)曲線與切線及直線所圍成的圖形面積為,求的表達式; (3) 在滿足(2)的條件下, 若數(shù)列的前項和為,求證:N.

          (1) ,,;(2) ;(3)見解析.

          解析試題分析:(1)利用導(dǎo)數(shù)求直線切線和切線的方程,從而易得的值,再得直線的方程,知點在直線上,所以,既得通項公式;(2)觀察圖形利用定積分求表達式;(3)分別求得表達式,再用數(shù)學(xué)歸納法、二項式定理及導(dǎo)數(shù)的方法證明即可.
          試題解析:(1) 由,設(shè)直線的斜率為,則.
          ∴直線的方程為.令,得,                       1分
          , ∴. ∴.
          ∴直線的方程為.令,得.              2分
          一般地,直線的方程為,
          由于點在直線上,∴.                        3分
          ∴數(shù)列是首項為,公差為的等差數(shù)列.∴.              4分
          (2)
          .                                                6分
          (3)證明: ,  8分
          .
          要證明,只要證明,即只要證明.       9分
          證法1:(數(shù)學(xué)歸納法)
          ①當(dāng)時,顯然成立;
          ②假設(shè)時,成立,則當(dāng)時,,
          ,
          ,
          時,也成立,由①②知不等式對一切都成立.          14分
          證法2:
          .
          所以不等式對一切都成立.                14分
          證法3:令,則

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)f(x)=aex,g(x)=lnx-lna,其中a為常數(shù),e=2.718…,且函數(shù)y=f(x)和y=g(x)的圖像在它們與坐標軸交點處的切線互相平行.
          (1)求常數(shù)a的值;(2)若存在x使不等式>成立,求實數(shù)m的取值范圍;
          (3)對于函數(shù)y=f(x)和y=g(x)公共定義域內(nèi)的任意實數(shù)x0,我們把|f(x0)-g(x0)|的值稱為兩函數(shù)在x0處的偏差.求證:函數(shù)y=f(x)和y=g(x)在其公共定義域內(nèi)的所有偏差都大于2.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù).
          (1) 當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
          (2) 當(dāng)時,函數(shù)圖象上的點都在所表示的平面區(qū)域內(nèi),求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知.
          (1)求的極值,并證明:若;
          (2)設(shè),且,,證明:,
          ,由上述結(jié)論猜想一個一般性結(jié)論(不需要證明);
          (3)證明:若,則.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          函數(shù)
          (1)當(dāng)時,對任意R,存在R,使,求實數(shù)的取值范圍;
          (2)若對任意恒成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知是函數(shù)的兩個極值點.
          (1)若,,求函數(shù)的解析式;
          (2)若,求實數(shù)的最大值;
          (3)設(shè)函數(shù),若,且,求函數(shù)內(nèi)的最小值.(用表示)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù)(其中).
          (Ⅰ) 當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
          (Ⅱ) 當(dāng)時,求函數(shù)上的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)為自然對數(shù)的底數(shù))
          (Ⅰ)若曲線在點處的切線平行于軸,求的值;
          (Ⅱ)求函數(shù)的極值;
          (Ⅲ)當(dāng)時,若直線與曲線沒有公共點,求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù),當(dāng)時,取得極大值;當(dāng)時,取得極小值.
          、、的值;
          處的切線方程.

          查看答案和解析>>