日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,且(a+b+c)(a+b﹣c)=3ab.
          (Ⅰ)求角C的值;
          (Ⅱ)若c=2,且△ABC為銳角三角形,求a+b的取值范圍.

          【答案】解:(Ⅰ)△ABC中,(a+b+c)(a+b﹣c)=3ab,

          ∴a2+b2﹣c2=ab,

          由余弦定理得,cosC= = ;

          又∵C∈(0,π),

          ∴C= ;

          (Ⅱ)由c=2,C= ,根據(jù)正弦定理得,

          = = = = ,

          ∴a+b= (sinA+sinB)

          = [sinA+sin( ﹣A)]

          =2 sinA+2cosA

          =4sin(A+ );

          又∵△ABC為銳角三角形,

          ,

          解得 <A< ;

          <A+ ,

          ∴2 <4sin(A+ )≤4,

          綜上,a+b的取值范圍是(2 ,4]


          【解析】(Ⅰ)化簡(a+b+c)(a+b﹣c)=3ab,利用余弦定理求得C的值;(Ⅱ)由正弦定理求出a+b的解析式,利用三角恒等變換化簡,根據(jù)題意求出A的取值范圍,從而求出a+b的取值范圍.
          【考點精析】根據(jù)題目的已知條件,利用余弦定理的定義的相關(guān)知識可以得到問題的答案,需要掌握余弦定理:;;

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)= mcos2x+(m﹣2)sinx,其中1≤m≤2,若函數(shù)f(x)的最大值記為g(m),則g(m)的最小值為(
          A.﹣
          B.1
          C.3﹣
          D. ﹣1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為 (其中t為參數(shù)),現(xiàn)以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ=4cosθ.
          (Ⅰ)寫出直線l和曲線C的普通方程;
          (Ⅱ)已知點P為曲線C上的動點,求P到直線l的距離的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ均為正的常數(shù))的最小正周期為π,當(dāng)x= 時,函數(shù)f(x)取得最小值,則下列結(jié)論正確的是(
          A.f(2)<f(﹣2)<f(0)
          B.f(0)<f(2)<f(﹣2)
          C.f(﹣2)<f(0)<f(2)
          D.f(2)<f(0)<f(﹣2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】用數(shù)學(xué)歸納法證明1+2+3+…+n2= ,則當(dāng)n=k+1時左端應(yīng)在n=k的基礎(chǔ)上加上(
          A.k2+1
          B.(k+1)2
          C.
          D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線l的參數(shù)方程為 (0≤α<π,t為參數(shù)),曲線C的極坐標(biāo)方程為ρ=
          (Ⅰ)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,并說明曲線C的形狀;
          (Ⅱ)若直線l經(jīng)過點(1,0),求直線l被曲線C截得的線段AB的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)面BB1C1C為菱形,AB⊥B1C.
          (Ⅰ)證明:AC=AB1;
          (Ⅱ)若AC⊥AB1 , ∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知某產(chǎn)品的廣告費用x(單位:萬元)與銷售額y(單位:萬元)具有線性關(guān)系關(guān)系,其統(tǒng)計數(shù)據(jù)如下表:

          x

          3

          4

          5

          6

          y

          25

          30

          40

          45

          由上表可得線性回歸方程 = x+ ,據(jù)此模型預(yù)報廣告費用為8萬元時的銷售額是(
          附: = ; = x.
          A.59.5
          B.52.5
          C.56
          D.63.5

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱柱中,平面,, , 的中點.

          Ⅰ)求CEDB所成角的余弦值;

          Ⅱ)設(shè)點在線段上,且直線與平面所成角的正弦值為,求線段的長度

          查看答案和解析>>

          同步練習(xí)冊答案