日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情
          在△ABC中,AB=1,BC=2,B=60°,則AC=( 。
          A、
          5+2
          3
          B、
          7
          C、
          5-2
          3
          D、
          3
          考點:余弦定理
          專題:三角函數的求值
          分析:利用余弦定理列出關系式,將AB,BC,以及cosB的值代入計算即可求出AC的長.
          解答: 解:∵在△ABC中,AB=1,BC=2,B=60°,
          ∴由余弦定理得:AC2=AB2+BC2-2AB•BC•cosB=1+4-2=3,
          則AC=
          3

          故選:D.
          點評:此題考查了余弦定理,以及特殊角的三角函數值,熟練掌握余弦定理是解本題的關鍵.
          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          已知一個幾何體圖形的三視圖如圖所示,則該幾何體體積為
           

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          某導演擬從5名演員中選取3名參加5場演出,其中第三場必須2人參加,其余各場只要1人參加,每人參加2場演出,其中演員甲不能參加第三場,且每位演員不能連續(xù)出場參加演出,則導演安排演出的方法種數為( 。
          A、36B、48C、96D、144

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          各項為正的等比數列{an}中,a4與a14的等比中項為2
          2
          ,則log2a7+log2a11=(  )
          A、4B、3C、2D、1

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          若函數f(x)在區(qū)間[a,b]上的值域仍為[a,b],則區(qū)間[a,b]稱為函數f(x)的一個保值區(qū)間,函數y=2sinx的保值區(qū)間的個數為( 。
          A、1B、2C、3D、4

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          已知全集為R,集合A={x|2x≥1},B={x|x2-6x+8≤0},則A∩∁RB=(  )
          A、{x|x≤0}
          B、R
          C、{x|0≤x<2,或x>4}
          D、{x|0<x≤2,或x≥4}

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          浙大學生暑假搞公益活動,有四名大學生分別到西湖柳浪聞鶯、花港觀魚、雷峰塔三個景點為游客免費送水,如果每個景區(qū)至少一名大學生,則甲乙兩名大學生被分到不同景點的情況有(  )
          A、10B、20C、30D、40

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          若不等式|x-a|+
          1
          x
          1
          2
          在x>0上恒成立,則實數a的取值范圍是(  )
          A、a≤2B、a<2
          C、a>2D、a≥2

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          某人參加一檔綜藝節(jié)目,需依次回答6道題闖關,每關答一題,若回答正確,則他可進入下一關;若回答錯誤,則他離開此節(jié)目,按規(guī)定,他有一次求助親友團的機會,若回答正確,也被視為答案正確,否則視為錯誤,6道題目隨機排列,已知他能答出其中3題,親友團能答對其余3題中的2題,設他能闖過的關數為隨機變量X.
          (Ⅰ)求他恰好闖過一關的概率;
          (Ⅱ)求X的分布列與期望.

          查看答案和解析>>

          同步練習冊答案