日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情

          【題目】已知奇函數f(x),x∈(0,+∞),f(x)=lgx,則不等式f(x)<0的解集是

          【答案】(﹣∞,﹣1)∪(0,1)
          【解析】解:x∈(0,+∞),f(x)=lgx,不等式f(x)<0化為lgx<0,∴0<x<1.
          當x<0時,∵函數f(x)是奇函數,∴f(x)=﹣f(﹣x)=﹣lg(﹣x),
          由f(x)<0即﹣lg(﹣x)<0,化為lg(﹣x)>0,∴﹣x>1,解得x<﹣1.
          綜上可得不等式f(x)<0的解集是:(﹣∞,﹣1)∪(0,1).
          所以答案是:(﹣∞,﹣1)∪(0,1).
          【考點精析】關于本題考查的函數奇偶性的性質和對數的運算性質,需要了解在公共定義域內,偶函數的加減乘除仍為偶函數;奇函數的加減仍為奇函數;奇數個奇函數的乘除認為奇函數;偶數個奇函數的乘除為偶函數;一奇一偶的乘積是奇函數;復合函數的奇偶性:一個為偶就為偶,兩個為奇才為奇;①加法:②減法:③數乘:才能得出正確答案.

          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          【題目】共享單車是指企業(yè)在校園、地鐵站點、公交站點、居民區(qū)、商業(yè)區(qū)、公共服務區(qū)等提供自行車單車共享服務,是共享經濟的一種新形態(tài).一個共享單車企業(yè)在某個城市就“一天中一輛單車的平均成本(單位:元)與租用單車的數量(單位:千輛)之間的關系”進行調查研究,在調查過程中進行了統(tǒng)計,得出相關數據見下表:

          租用單車數量(千輛)

          2

          3

          4

          5

          8

          每天一輛車平均成本(元)

          3.2

          2.4

          2

          1.9

          1.7

          根據以上數據,研究人員分別借助甲、乙兩種不同的回歸模型,得到兩個回歸方程,方程甲: ,方程乙: .

          (1)為了評價兩種模型的擬合效果,完成以下任務:

          ①完成下表(計算結果精確到0.1)(備注: ,稱為相應于點的殘差(也叫隨機誤差));

          租用單車數量 (千輛)

          2

          3

          4

          5

          8

          每天一輛車平均成本 (元)

          3.2

          2.4

          2

          1.9

          1.7

          模型甲

          估計值

          2.4

          2.1

          1.6

          殘差

          0

          -0.1

          0.1

          模型乙

          估計值

          2.3

          2

          1.9

          殘差

          0.1

          0

          0

          ②分別計算模型甲與模型乙的殘差平方和,并通過比較的大小,判斷哪個模型擬合效果更好.

          (2)這個公司在該城市投放共享單車后,受到廣大市民的熱烈歡迎,共享單車常常供不應求,于是該公司研究是否增加投放.根據市場調查,這個城市投放8千輛時,該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.6,0.4;投放1萬輛時,該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.4,0.6.問該公司應該投放8千輛還是1萬輛能獲得更多利潤?(按(1)中擬合效果較好的模型計算一天中一輛單車的平均成本,利潤=收入-成本).

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知曲線 ,則下列說法正確的是( )

          A. 上各點橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線

          B. 上各點橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線

          C. 把曲線向右平移個單位長度,再把得到的曲線上各點橫坐標縮短到原來的,縱坐標不變,得到曲線

          D. 把曲線向右平移個單位長度,再把得到的曲線上各點橫坐標縮短到原來的,縱坐標不變,得到曲線

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知數列{an}滿足a1=1,a2=2,an+2=(1+cos2 )an+sin2 ,則該數列的前12項和為(
          A.211
          B.212
          C.126
          D.147

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】(本小題滿分12)

          設函數有兩個極值點,且

          I)求的取值范圍,并討論的單調性;

          II)證明: w.w.w..c.o.m

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知函數

          (Ⅰ)若函數有零點,其實數的取值范圍.

          (Ⅱ)證明:當時,

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】化簡或求值:
          (1)(2 0+22×(2 ﹣(
          (2)2(lg 2+lg lg5+

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】如圖,在中,已知點D在邊AB上,AD=3DB,

          , ,BC=13.

          (1)求的值;

          (2)求CD的長.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知函數f(x)=x3+ax2+b滿足f(1)=0,且在x=2時函數取得極值.
          (1)求a,b的值;
          (2)求函數f(x)的單調區(qū)間;
          (3)求函數f(x)在區(qū)間[0,t](t>0)上的最大值g(t)的表達式.

          查看答案和解析>>

          同步練習冊答案