日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓為左焦點(diǎn),為上頂點(diǎn),為右頂點(diǎn),若,拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為.

          (1)求的標(biāo)準(zhǔn)方程;

          (2)是否存在過點(diǎn)的直線,與交點(diǎn)分別是,使得?如果存在,求出直線的方程;如果不存在,請(qǐng)說明理由.

          【答案】(1);(2)

          【解析】分析:(1)由題設(shè)有,再根據(jù)可得的值,從而得到橢圓的標(biāo)準(zhǔn)方程.

          (2)因?yàn)?/span>,故,設(shè)直線方程為,分別聯(lián)立直線與橢圓、直線與拋物線的方程,消去后利用韋達(dá)定理用表示,解出后即得直線方程.

          詳解:(1)依題意可知,即,

          由右頂點(diǎn)為,解得,所以的標(biāo)準(zhǔn)方程為.

          (2)依題意可知的方程為,假設(shè)存在符合題意的直線,

          設(shè)直線方程為,,

          聯(lián)立方程組,得,

          由韋達(dá)定理得,則

          聯(lián)立方程組,得,由韋達(dá)定理得,所以,

          ,則,即,解得,

          所以存在符合題意的直線方程為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          (1)討論函數(shù)的單調(diào)性;

          (2)若對(duì)于任意的,當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)拋物線的焦點(diǎn)為,過點(diǎn)作直線與拋物線交于,兩點(diǎn),點(diǎn)滿足,過軸的垂線與拋物線交于點(diǎn),若,則點(diǎn)的橫坐標(biāo)為__________,__________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)是等邊三角形的三個(gè)頂點(diǎn),且長(zhǎng)軸長(zhǎng)為4

          1)求橢圓的方程;

          2)若是橢圓的左頂點(diǎn),經(jīng)過左焦點(diǎn)的直線與橢圓交于兩點(diǎn),求的面積之差的絕對(duì)值的最大值,并求取得最大值時(shí)直線的方程.為坐標(biāo)原點(diǎn))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C:()的短軸長(zhǎng)為2,離心率為

          (1)求橢圓C的方程

          (2)若過點(diǎn)M(2,0)的引斜率為的直線與橢圓C相交于兩點(diǎn)GH,設(shè)P為橢圓C上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)橢圓的右焦點(diǎn)為,右頂點(diǎn)為.已知,其中為原點(diǎn), 為橢圓的離心率.

          1)求橢圓的方程及離心率的值;

          2)設(shè)過點(diǎn)的直線與橢圓交于點(diǎn)不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn).,且,求直線的斜率的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)常數(shù).在平面直角坐標(biāo)系xOy中,已知點(diǎn),直線l:,曲線Γ:,).l與x軸交于點(diǎn)A、與Γ交于點(diǎn)B.P、Q分別是曲線Γ與線段AB上的動(dòng)點(diǎn).

          (1)用t表示點(diǎn)B到點(diǎn)F的距離;

          (2)設(shè),,線段OQ的中點(diǎn)在直線FP上,求△AQP的面積;

          (3)設(shè),是否存在以FP、FQ為鄰邊的矩形FPEQ,使得點(diǎn)E在Γ上?若存在,求點(diǎn)P的坐標(biāo);若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓經(jīng)過點(diǎn)離心率.

          (Ⅰ)求橢圓的方程;

          (Ⅱ)經(jīng)過橢圓左焦點(diǎn)的直線(不經(jīng)過點(diǎn)且不與軸重合)與橢圓交于兩點(diǎn),與直線:交于點(diǎn),記直線的斜率分別為.則是否存在常數(shù),使得向量 共線?若存在求出的值;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知cos2B+cosB=1-cosAcosC.

          (1)求證:a,b,c成等比數(shù)列;

          (2)b=2,求△ABC的面積的最大值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案