日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓的兩個焦點與短軸的一個端點是等邊三角形的三個頂點,且長軸長為4

          1)求橢圓的方程;

          2)若是橢圓的左頂點,經(jīng)過左焦點的直線與橢圓交于、兩點,求的面積之差的絕對值的最大值,并求取得最大值時直線的方程.為坐標原點)

          【答案】(1);(2)最大值為,直線的方程為

          【解析】

          1)由題意可知:,,根據(jù)橢圓的性質(zhì):,即可求得的值,從而求得橢圓方程;

          2)由題意設(shè)直線方程,,將直線方程代入橢圓方程,根據(jù)韋達定理求得,根據(jù)三角形的面積公式,對進行分類討論,從而求得的最大值,此時即可求出直線方程.

          1)由題意得,即,

          因為,即,

          故橢圓的方程為:;

          2)設(shè)的面積為,的面積為

          設(shè)直線的方程為,,,

          ,整理得:

          由韋達定理可知:,

          時,,

          時,,

          (當且僅當,即時等號成立).

          的最大值為,直線的方程為.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,,,是曲線上的點,,,軸正半軸上的點,且,,均為斜邊在軸上的等腰直角三角形(為坐標原點).

          1)寫出之間的等量關(guān)系,以及、之間的等量關(guān)系;

          2)猜測并證明數(shù)列的通項公式;

          3)設(shè),集合,,若,求實常數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)x=1x=2處取得極值.

          (1)ab的值;

          (2)若方程有三個根,求c的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知拋物線的焦點為F,點在此拋物線上,,不過原點的直線與拋物線C交于A,B兩點,以AB為直徑的圓M過坐標原點.

          (1)求拋物線C的方程;

          (2)證明:直線恒過定點;

          (3)若線段AB中點的縱坐標為2,求此時直線和圓M的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】定義,,倒平均數(shù).

          1)若數(shù)列項的倒平均數(shù),求的通項公式;

          2)設(shè)數(shù)列滿足:當為奇數(shù)時,,當為偶數(shù)時,.項的倒平均數(shù),求

          3)設(shè)函數(shù),對(1)中的數(shù)列,是否存在實數(shù),使得當時,對任意恒成立?若存在,求出最大的實數(shù);若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知離心率為 的橢圓(a>b>0)過點M(,1).

          (1)求橢圓的方程.

          (2)已知與圓x2+y2=相切的直線l與橢圓C相交于不同兩點A,B,O為坐標原點,求的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓,為左焦點,為上頂點,為右頂點,若,拋物線的頂點在坐標原點,焦點為.

          (1)求的標準方程;

          (2)是否存在過點的直線,與交點分別是,使得?如果存在,求出直線的方程;如果不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,從流水線上隨機抽取100件產(chǎn)品,統(tǒng)計其質(zhì)量指標值并繪制頻率分布直方圖(如圖):

          規(guī)定產(chǎn)品的質(zhì)量指標值在的為劣質(zhì)品,在的為優(yōu)等品,在的為特優(yōu)品,銷售時劣質(zhì)品每件虧損1元,優(yōu)等品每件盈利3元,特優(yōu)品每件盈利5元.以這100 件產(chǎn)品的質(zhì)量指標值位于各區(qū)間的頻率代替產(chǎn)品的質(zhì)量指標值位于該區(qū)間的概率.

          (1)求每件產(chǎn)品的平均銷售利潤;

          (2)該企業(yè)為了解年營銷費用(單位:萬元)對年銷售量(單位:萬件)的影響,對近5年年營銷費用和年銷售量數(shù)據(jù)做了初步處理,得到如圖的散點圖及一些統(tǒng)計量的值.

          16.30

          23.20

          0.81

          1.62

          表中,.

          根據(jù)散點圖判斷,可以作為年銷售量(萬件)關(guān)于年營銷費用(萬元)的回歸方程.

          ①求關(guān)于的回歸方程;

          ⑦用所求的回歸方程估計該企業(yè)應(yīng)投人多少年營銷費,才能使得該企業(yè)的年收益的預(yù)報值達到最大?(收益=銷售利潤營銷費用,取

          附:對于一組數(shù)據(jù),…,其回歸直線均斜率和截距的最小二乘估計分別為,.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知某企業(yè)有職工5000人,其中男職工3500人,女職工1500人.該企業(yè)為了豐富職工的業(yè)余生活,決定新建職工活動中心,為此,該企業(yè)工會采用分層抽樣的方法,隨機抽取了300名職工每周的平均運動時間(單位:h),匯總得到頻率分布表(如表所示),并據(jù)此來估計該企業(yè)職工每周的運動時間:

          平均運動時間

          頻數(shù)

          頻率

          [0,2

          15

          0.05

          [2,4

          m

          0.2

          [4,6

          45

          0.15

          [6,8

          755

          0.25

          [8,10

          90

          0.3

          [10,12

          p

          n

          合計

          300

          1

          1)求抽取的女職工的人數(shù);

          2)①根據(jù)頻率分布表,求出m、np的值,完成如圖所示的頻率分布直方圖,并估計該企業(yè)職工每周的平均運動時間不低于4h的概率;

          男職工

          女職工

          總計

          平均運動時間低于4h

          平均運動時間不低于4h

          總計

          ②若在樣本數(shù)據(jù)中,有60名女職工每周的平均運動時間不低于4h,請完成以下2×2列聯(lián)表,并判斷是否有95%以上的把握認為“該企業(yè)職工毎周的平均運動時間不低于4h與性別有關(guān)”.

          附:K2=,其中n=a+b+c+d

          PK2k0

          0.25

          0.15

          0.10

          0.05

          0.025

          k0

          1.323

          2.072

          2.706

          3.841

          5.024

          查看答案和解析>>

          同步練習冊答案