日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖四棱錐E﹣ABCD中,四邊形ABCD為平行四邊形,△BCE為等邊三角形,△ABE是以∠A為直角的等腰直角三角形,且AC=BC. (Ⅰ)證明:平面ABE⊥平面BCE;
          (Ⅱ)求二面角A﹣DE﹣C的余弦值.

          【答案】解:(Ⅰ)證明:設(shè)O為BE的中點(diǎn),連接AO與CO, 則AO⊥BE,CO⊥BE.
          設(shè)AC=BC=2,則AO=1, ,AO2+CO2=AC2 ,
          ∠AOC=90°,所以AO⊥CO,
          故平面ABE⊥平面BCE.

          (Ⅱ)由(Ⅰ)可知AO,BE,CO兩兩互相垂直.OE的方向?yàn)閤軸正方向,OE為單位長,
          以O(shè)為坐標(biāo)原點(diǎn),建立如圖所示空間直角坐標(biāo)系O﹣xyz,
          則A(0,0,1),E(1,0,0), ,B(﹣1,0,0), ,
          所以 , ,
          , ,
          設(shè) =(x,y,z)是平面ADE的法向量,則 ,即 所以 ,
          設(shè) 是平面DEC的法向量,則 ,同理可取 ,
          = ,所以二面角A﹣DE﹣C的余弦值為
          【解析】(Ⅰ)設(shè)O為BE的中點(diǎn),連接AO與CO,說明AO⊥BE,CO⊥BE.證明AO⊥CO,然后證明平面ABE⊥平面BCE.(Ⅱ)以O(shè)為坐標(biāo)原點(diǎn),建立如圖所示空間直角坐標(biāo)系O﹣xyz,求出相關(guān)點(diǎn)的坐標(biāo),平面ADE的法向量,平面DEC的法向量,利用向量的數(shù)量積求解二面角A﹣DE﹣C的余弦值.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某公司為了對一種新產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按亊先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):

          單價(jià)x(元)

          4

          5

          6

          7

          8

          9

          銷量V(件)

          90

          84

          83

          80

          75

          68

          由表中數(shù)據(jù).求得線性回歸方程為 =﹣4x+a.若在這些樣本點(diǎn)中任取一點(diǎn),則它在回歸直線右上方的概率為

          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】閱讀如圖程序框圖,運(yùn)行相應(yīng)的程序,則程序運(yùn)行后輸出的結(jié)果為(
          A.7
          B.9
          C.10
          D.11

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C: ,F(xiàn)1 , F2分別為左右焦點(diǎn),在橢圓C上滿足條件 的點(diǎn)A有且只有兩個(gè)
          (1)求橢圓C的方程
          (2)若過點(diǎn)F2的兩條相互垂直的直線l1與l2 , 直線l1與曲線y2=4x交于兩點(diǎn)M、N,直線l2與橢圓C交于兩點(diǎn)P、Q,求四邊形PMQN面積的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】定義在R上的連續(xù)函數(shù)f(x)滿足f(1)=2,且f(x)在R上的導(dǎo)函數(shù)f′(x)<1,則不等式f(x)<x+1的解集為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若正實(shí)數(shù)a,b滿足 + = ,則ab+a+b的最小值為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,底面ABCD為菱形,E為棱PB的中點(diǎn),O為AC與BD的交點(diǎn),
          (Ⅰ)證明:PD∥平面EAC
          (Ⅱ)證明:平面EAC⊥平面PBD.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,在正三棱柱ABC﹣A1B1C1中,點(diǎn)D在邊BC上,AD⊥C1D.
          (1)求證:平面ADC1⊥平面BCC1B1
          (2)如果點(diǎn)E是B1C1的中點(diǎn),求證:AE∥平面ADC1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=ax+bx(a>0,b>0,a≠1,b≠1). (Ⅰ)設(shè) ,求方程f(x)=2的根;
          (Ⅱ)設(shè) ,函數(shù)g(x)=f(x)﹣2,已知b>3時(shí)存在x0∈(﹣1,0)使得g(x0)<0.若g(x)=0有且只有一個(gè)零點(diǎn),求b的值.

          查看答案和解析>>

          同步練習(xí)冊答案