【題目】已知,直線
經(jīng)過定點(diǎn)
,直線
經(jīng)過定點(diǎn)
,且
與
相交于
點(diǎn),這兩條直線與兩坐標(biāo)軸圍成的四邊形面積為
.
(1)證明:,并求定點(diǎn)
、
的坐標(biāo);
(2)求三角形面積最大值,以及
時的
.
【答案】(1)證明見解析,,
;(2)三角形
面積最大值為
,
.
【解析】
(1)先由得到
,即可求出
;再由
得到
,即可求出
;根據(jù)兩直線的斜率之積,即可判斷直線垂直;
(2)先分別記點(diǎn)到直線
的距離為
、點(diǎn)
到直線
的距離為
,由點(diǎn)到直線距離公式求出
,
,表示出
,根據(jù)基本不等式求出最值,再由
,結(jié)合極限的運(yùn)算,即可得出結(jié)果.
(1)因?yàn)?/span>可化為
,因此易知
過點(diǎn)
,即
;
由可得:
,因此直線
過點(diǎn)
;
又,直線
的斜率為
;直線
的斜率為
;所以
,因此
;
(2)分別記點(diǎn)到直線
的距離為
、點(diǎn)
到直線
的距離為
,
則,
,
由(1)可得:,
所以,
令,
,
,所以
,
;
當(dāng)時,
;當(dāng)
時,
;
當(dāng)時,則
,
當(dāng)且僅當(dāng),即
,即
時,等號成立,
又,
,當(dāng)
時,
;當(dāng)
時,
;
綜上三角形面積最大值為
;
又兩條直線與兩坐標(biāo)軸圍成的四邊形面積為
;
所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的左右焦點(diǎn)分別是
,拋物線
與橢圓
有相同的焦點(diǎn),點(diǎn)
為拋物線與橢圓
在第一象限的交點(diǎn),且滿足
.
(1)求橢圓的方程;
(2)過點(diǎn)作直線
與橢圓
交于
兩點(diǎn),設(shè)
.若
,求
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足
是數(shù)列
的前
項(xiàng)的和.
(1)求數(shù)列的通項(xiàng)公式;
(2)若成等差數(shù)列,
,18,
成等比數(shù)列,求正整數(shù)
的值;
(3)是否存在,使得
為數(shù)列
中的項(xiàng)?若存在,求出所有滿足條件的
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列中,
、
是給定的非零整數(shù),
.
(1)若,
,求
;
(2)證明:從中一定可以選取無窮多項(xiàng)組成兩個不同的常數(shù)項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的是( )
A.命題“若,則
”的逆否命題為:“若
,則
”
B.“”是“
”的充分而不必要條件
C.若且
為假命題,則
、
均為假命題
D.命題“存在
,使得
”,則非
“任意
,均有
”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題:函數(shù)
的定義域?yàn)?/span>
;命題
:關(guān)于
的方程
有實(shí)根.
(1)如果是真命題,求實(shí)數(shù)
的取值范圍.
(2)如果命題“”為真命題,且“
”為假命題,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】世界衛(wèi)生組織的最新研究報告顯示,目前中國近視患者人數(shù)多達(dá)6億,高中生和大學(xué)生的近視率均已超過七成,為了研究每周累計戶外暴露時間(單位:小時)與近視發(fā)病率的關(guān)系,對某中學(xué)一年級200名學(xué)生進(jìn)行不記名問卷調(diào)查,得到如下數(shù)據(jù):
每周累積戶外暴露時間(單位:小時) | 不少于28小時 | ||||
近視人數(shù) | 21 | 39 | 37 | 2 | 1 |
不近視人數(shù) | 3 | 37 | 52 | 5 | 3 |
(1)在每周累計戶外暴露時間不少于28小時的4名學(xué)生中,隨機(jī)抽取2名,求其中恰有一名學(xué)生不近視的概率;
(2)若每周累計戶外暴露時間少于14個小時被認(rèn)證為“不足夠的戶外暴露時間”,根據(jù)以上數(shù)據(jù)完成如下列聯(lián)表,并根據(jù)(2)中的列聯(lián)表判斷能否在犯錯誤的概率不超過0.01的前提下認(rèn)為不足夠的戶外暴露時間與近視有關(guān)系?
近視 | 不近視 | |
足夠的戶外暴露時間 | ||
不足夠的戶外暴露時間 |
附:
P | 0.050 | 0.010 | 0.001 |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方體ABCD﹣A′B′C′D′的棱長為1,E,F分別是棱AA′,CC′的中點(diǎn),過直線E,F的平面分別與棱BB′、DD′交于M,N,設(shè)BM=x,x∈[0,1],給出以下四個命題:
①平面MENF⊥平面BDD′B′;
②當(dāng)且僅當(dāng)x=時,四邊形MENF的面積最。
③四邊形MENF周長L=f(x),x∈[0,1]是單調(diào)函數(shù);
④四棱錐C′﹣MENF的體積V=h(x)為常函數(shù);
以上命題中假命題的序號為( 。
A. ①④B. ②C. ③D. ③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)為
.
(1)求曲線的普通方程和曲線
的直角坐標(biāo)方程;
(2)若曲線和曲線
有三個公共點(diǎn),求以這三個公共點(diǎn)為頂點(diǎn)的三角形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com