日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (文科)一動(dòng)圓過定點(diǎn)P(0,1),且與定直線l:y=-1相切.
          (1)求動(dòng)圓圓心C的軌跡方程;
          (2)若(1)中的軌跡上兩動(dòng)點(diǎn)記為A(x1,y1),B(x2,y2),且x1x2=-16.
          ①求證:直線AB過一定點(diǎn),并求該定點(diǎn)坐標(biāo);
          ②求|PA|+|PB|的取值范圍.
          (1)由已知?jiǎng)訄A過定點(diǎn)P(0,1),且與定直線l:y=-1相切,
          ∴動(dòng)圓圓心C到點(diǎn)P與到定直線l的距離相等,
          ∴點(diǎn)C的軌跡是以P為焦點(diǎn),定直線l為準(zhǔn)線的拋物線.
          ∴所求方程為:x2=4y;
          (2)①證明:設(shè)直線AB方程為:y=kx+b,
          y=kx+b
          x2=4y
          ,消去y得:x2-4kx-4b=0.
          ∴x1+x2=4k,x1x2=-4b.
          ∵x1x2=-16,∴b=4.
          ∴直線AB過定點(diǎn)(0,4);
          ②由拋物線定義知:|PA|=y1+1,|PB|=y2+1,
          又y1=kx1+4,y2=kx2+4,x1+x2=4k,x1x2=-16.
          |PA|+|PB|=k(x1+x2)+10=4k2+10≥10(等號(hào)當(dāng)k=0時(shí)成立),
          ∴所求|PA|+|PB|的取值范圍是[10,+∞).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓mx2+ny2=1,直線y=x+1與該橢圓相交于P和Q兩點(diǎn),且OP⊥OQ,|PQ|=
          10
          2
          ,求橢圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,已知拋物線C:y2=2px(p>0)上橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5.
          (Ⅰ)求拋物線C的方程;
          (Ⅱ)設(shè)直線y=kx+b與拋物線C交于兩點(diǎn)A(x1,y1),B(x2,y2),且|y1-y2|=a(a為正常數(shù)).過弦AB的中點(diǎn)M作平行于x軸的直線交拋物線C于點(diǎn)D,連接AD、BD得到△ABD.
          (i)求實(shí)數(shù)a,b,k滿足的等量關(guān)系;
          (ii)△ABD的面積是否為定值?若為定值,求出此定值;若不是定值,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,M是拋物線y2=x上的一個(gè)定點(diǎn),動(dòng)弦ME、MF分別與x軸交于不同的點(diǎn)A、B,且|MA|=|MB|.證明:直線EF的斜率為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          橢圓C1
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的左右頂點(diǎn)分別為A、B.點(diǎn)P雙曲線C2
          x2
          a2
          -
          y2
          b2
          =1在第一象限內(nèi)的圖象上一點(diǎn),直線AP、BP與橢圓C1分別交于C、D點(diǎn).若△ACD與△PCD的面積相等.
          (1)求P點(diǎn)的坐標(biāo);
          (2)能否使直線CD過橢圓C1的右焦點(diǎn),若能,求出此時(shí)雙曲線C2的離心率,若不能,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,點(diǎn)P在橢圓C上,且PF1⊥F1F2,|PF1|=
          4
          3
          ,|PF2|=
          14
          3

          (Ⅰ)求橢圓C的方程;
          (Ⅱ)若直線l過點(diǎn)M(-2,1),交橢圓C于A,B兩點(diǎn),且M恰是A,B中點(diǎn),求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左焦點(diǎn)為F1(-1,0),離心率為
          2
          2

          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)設(shè)過點(diǎn)F且不與坐標(biāo)軸垂直的直線l交橢圓于A,B兩點(diǎn),線段AB的垂直平分線與x軸交于點(diǎn)G,求點(diǎn)G的橫坐標(biāo)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓E:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          ,過右焦點(diǎn)F且斜率為
          2
          的直線l交橢圓E于兩點(diǎn)A,B,若以原點(diǎn)為圓心,
          6
          3
          為半徑的圓與直線l相切
          (1)求焦點(diǎn)F的坐標(biāo);
          (2)以O(shè)A,OB為鄰邊的平行四邊形OACB中,頂點(diǎn)C也在橢圓E上,求橢圓E的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          已知兩條拋物線y1=x2+2mx+4,y2=x2+mx-m中至少有一條與x軸有公共點(diǎn),則實(shí)數(shù)m的取值范圍是______.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案