【題目】“公平正義”是社會(huì)主義和諧社會(huì)的重要特征,是社會(huì)主義法治理念的價(jià)值追求.“考試”作為一種公平公正選拔人才的有效途徑,正被廣泛采用.每次考試過(guò)后,考生最關(guān)心的問(wèn)題是:自己的考試名次是多少?自已能否被錄取?能獲得什么樣的職位? 某單位準(zhǔn)備通過(guò)考試(按照高分優(yōu)先錄取的原則)錄用名,其中
個(gè)高薪職位和
個(gè)普薪職位.實(shí)際報(bào)名人數(shù)為
名,考試滿(mǎn)分為
分.(一般地,對(duì)于一次成功的考試來(lái)說(shuō),考試成績(jī)應(yīng)服從正態(tài)分布. )考試后考試成績(jī)的部分統(tǒng)計(jì)結(jié)果如下:
考試平均成績(jī)是分,
分及其以上的高分考生
名.
(1)最低錄取分?jǐn)?shù)是多少?(結(jié)果保留為整數(shù))
(2)考生甲的成績(jī)?yōu)?/span>分,若甲被錄取,能否獲得高薪職位?若不能被錄取,請(qǐng)說(shuō)明理由.
參考資料:(1)當(dāng)時(shí),令
,則
.
(2)當(dāng)時(shí),
,
,
.
【答案】(1)分或
分.(2)能獲得高薪職位.見(jiàn)解析
【解析】
(1)利用考試的平均成績(jī)、高分考生的人數(shù),以及題目所給正態(tài)分布的參考資料,求得考生成績(jī)的分布
,利用錄取率
列方程,由此求得最低錄取分?jǐn)?shù)線(xiàn).
(2)計(jì)算出不低于考生甲的成績(jī)的人數(shù)約為,由此判斷出甲能獲得高薪職位.
(1)設(shè)考生成績(jī)?yōu)?/span>,則依題意
應(yīng)服從正態(tài)分布,即
.
令,則
.
由分及其以上的高分考生
名可得
即,亦即
.
則,解得
,
設(shè)最低錄取分?jǐn)?shù)線(xiàn)為,則
則,
.
即最低錄取分?jǐn)?shù)線(xiàn)為分或
分.
(2)考生甲的成績(jī),所以能被錄取.
,
表明不低于考生甲的成績(jī)的人數(shù)約為總?cè)藬?shù)的,
即考生甲大約排在第名,排在
名之前,所以他能獲得高薪職位.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列滿(mǎn)足
;
(1)若,求證:數(shù)列
為等比數(shù)列;
(2)在(1)的條件下,對(duì)于正整數(shù),若
這三項(xiàng)經(jīng)適當(dāng)排序后能構(gòu)成等差數(shù)列,求符合條件的數(shù)組
;
(3)若是
的前
項(xiàng)和,求不超過(guò)
的最大整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:{an}是公比大于1的等比數(shù)列,Sn為其前n項(xiàng)和,S3=7,且a1+3,3a2,a3+4構(gòu)成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=log2a3n+1,求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)古代數(shù)學(xué)經(jīng)典《九章算術(shù)》系統(tǒng)地總結(jié)了戰(zhàn)國(guó)、秦、漢時(shí)期的數(shù)學(xué)成就,書(shū)中將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱(chēng)之為陽(yáng)馬,將四個(gè)面都為直角三角形的三棱錐稱(chēng)之為鱉臑,如圖為一個(gè)陽(yáng)馬與一個(gè)鱉臑的組合體,已知平面
,四邊形
為正方形,
,
,若鱉臑
的外接球的體積為
,則陽(yáng)馬
的外接球的表面積等于______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)若當(dāng)時(shí),
取得極值,求
的值,并求
的單調(diào)區(qū)間.
(2)若存在兩個(gè)極值點(diǎn)
,求
的取值范圍,并證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線(xiàn)
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,直線(xiàn)
的極坐標(biāo)方程為
,且
與
交于
,
兩點(diǎn),已知點(diǎn)
的極坐標(biāo)為
.
(1)求曲線(xiàn)的普通方程和直線(xiàn)
的直角坐標(biāo)方程,并求
的值;
(2)若矩形內(nèi)接于曲線(xiàn)
且四邊與坐標(biāo)軸平行,求其周長(zhǎng)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知,
,求函數(shù)
的單調(diào)區(qū)間和極值;
(2)已知,不等式
(其中
為自然對(duì)數(shù)的底數(shù))對(duì)任意的實(shí)數(shù)
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)(
為常數(shù)).
(1)當(dāng)時(shí),求曲線(xiàn)
在
處的切線(xiàn)方程;
(2)若函數(shù)在
內(nèi)存在唯一極值點(diǎn)
,求實(shí)數(shù)
的取值范圍,并判斷
是
在
內(nèi)的極大值點(diǎn)還是極小值點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形與
均為菱形,設(shè)
與
相交于點(diǎn)
,若
,且
.
(1)求證:平面
;
(2)求直線(xiàn)與平面
所成角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com