【題目】已知:{an}是公比大于1的等比數(shù)列,Sn為其前n項和,S3=7,且a1+3,3a2,a3+4構(gòu)成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)令bn=log2a3n+1,求數(shù)列{bn}的前n項和Tn.
【答案】(1)an=2n﹣1,n∈N(2)Tn=(n2+n)
【解析】
(1)直接利用等比數(shù)列公式和等差中項公式計算得到答案.
(2)計算得到,直接利用等差數(shù)列求和公式得到答案.
(1){an}是公比q大于1的等比數(shù)列,Sn為其前n項和,S3=7,可得a1(1+q+q2)=7,①
a1+3,3a2,a3+4構(gòu)成等差數(shù)列,可得6a2=a1+3+a3+4,即6a1q=a1+a1q2+7,②
由①②可得a1=1,q=2,則an=2n﹣1,n∈N*;
(2),
數(shù)列{bn}的前n項和Tn=3(1+2+…+n)=3n(n+1)
(n2+n).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)為
,上頂點(diǎn)為
,直線
的斜率為
,且原點(diǎn)到直線
的距離為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若不經(jīng)過點(diǎn)的直線
與橢圓
交于
兩點(diǎn),且與圓
相切.試探究
的周長是否為定值,若是,求出定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,
、
為橢圓的左、右焦點(diǎn),
為橢圓上一點(diǎn),且
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線,過點(diǎn)
的直線交橢圓于
、
兩點(diǎn),線段
的垂直平分線分別交直線
、直線
于
、
兩點(diǎn),當(dāng)
最小時,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù),它的導(dǎo)函數(shù)為
.
(1)當(dāng)時,求
的零點(diǎn);
(2)若函數(shù)存在極小值點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】端午節(jié)是中國傳統(tǒng)節(jié)日之一節(jié)日期間,各大商場各種品牌的“粽子戰(zhàn)”便悄然打響.某記者走訪市場發(fā)現(xiàn),各大商場粽子種類繁多,價格不一根據(jù)數(shù)據(jù)統(tǒng)計分析,得到了某商場不同種類的粽子銷售價格(單位:元/千克)的頻數(shù)分布表,如表一所示.
表一:
價格/(元/千克) | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) |
種類數(shù) | 4 | 12 | 16 | 6 | 2 |
在調(diào)查中,記者還發(fā)現(xiàn),各大品牌在餡料方面還做足了功課,滿足了市民多樣化的需求除了蜜棗、豆沙等傳統(tǒng)餡料粽,很多品牌還推出了鮮肉、巧克力、海鮮等特色餡料粽在該商場內(nèi),記者隨機(jī)對100名顧客的年齡和粽子口味偏好進(jìn)行了調(diào)查,結(jié)果如表二.
表二:
喜歡傳統(tǒng)餡料粽 | 喜歡特色餡料粽 | 總計 | |
40歲以下 | 30 | 15 | 45 |
40歲及以上 | 50 | 5 | 55 |
總計 | 80 | 20 | 100 |
(1)根據(jù)表一估計該商場粽子的平均銷售價(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);
(2)根據(jù)表二信息能否有95%的把握認(rèn)為顧客的粽子口味偏好與年齡有關(guān)?
參考公式和數(shù)據(jù):(其中
為樣本容量)
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線,
相鄰對稱軸之間的距離為
,且函數(shù)
在
處取得最大值,則下列命題正確的個數(shù)為( )
①當(dāng)時,m的取值范圍是
;②將
的圖象向左平移
個單位后所對應(yīng)的函數(shù)為偶函數(shù);③函數(shù)
的最小正周期為
;④函數(shù)
在區(qū)間
上有且僅有一個零點(diǎn).
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點(diǎn)
,且橢圓
的一個頂點(diǎn)
的坐標(biāo)為
.過橢圓
的右焦點(diǎn)
的直線
與橢圓
交于不同的兩點(diǎn)
,
(
,
不同于點(diǎn)
),直線
與直線
:
交于點(diǎn)
.連接
,過點(diǎn)
作
的垂線與直線
交于點(diǎn)
.
(1)求橢圓的方程,并求點(diǎn)
的坐標(biāo);
(2)求證:,
,
三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“公平正義”是社會主義和諧社會的重要特征,是社會主義法治理念的價值追求.“考試”作為一種公平公正選拔人才的有效途徑,正被廣泛采用.每次考試過后,考生最關(guān)心的問題是:自己的考試名次是多少?自已能否被錄取?能獲得什么樣的職位? 某單位準(zhǔn)備通過考試(按照高分優(yōu)先錄取的原則)錄用名,其中
個高薪職位和
個普薪職位.實際報名人數(shù)為
名,考試滿分為
分.(一般地,對于一次成功的考試來說,考試成績應(yīng)服從正態(tài)分布. )考試后考試成績的部分統(tǒng)計結(jié)果如下:
考試平均成績是分,
分及其以上的高分考生
名.
(1)最低錄取分?jǐn)?shù)是多少?(結(jié)果保留為整數(shù))
(2)考生甲的成績?yōu)?/span>分,若甲被錄取,能否獲得高薪職位?若不能被錄取,請說明理由.
參考資料:(1)當(dāng)時,令
,則
.
(2)當(dāng)時,
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,等腰梯形中,
,
,
,
為
中點(diǎn),
與
交于點(diǎn)
,將
沿
折起,使點(diǎn)
到達(dá)點(diǎn)
的位置(
平面
).
(1)證明:平面平面
;
(2)若,試判斷線段
上是否存在一點(diǎn)
(不含端點(diǎn)),使得直線
與平面
所成角的正弦值為
,若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com