日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】1)已知,,求函數(shù)的單調(diào)區(qū)間和極值;

          2)已知,不等式(其中為自然對數(shù)的底數(shù))對任意的實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍.

          【答案】1)函數(shù)的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為.極小值,無極大值.2

          【解析】

          1)求導(dǎo)得到根據(jù)導(dǎo)數(shù)的正負(fù)得到函數(shù)的單調(diào)區(qū)間,再計(jì)算極值得到答案.

          2)變換得到,設(shè),等價(jià)于

          ,,根據(jù)函數(shù)的單調(diào)性得到最值得到答案.

          1)函數(shù)的定義域?yàn)?/span>,,由得,,

          所以當(dāng)時(shí),,當(dāng)時(shí),

          所以函數(shù)的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為.

          所以當(dāng)時(shí),取得極小值,無極大值.

          2)由得,,

          ,設(shè),,

          則不等式對于任意的實(shí)數(shù)恒成立,等價(jià)于,

          由(1)知,函數(shù)在區(qū)間上為增函數(shù),

          所以,即對任意的實(shí)數(shù)恒成立,

          因?yàn)?/span>,所以,

          對任意的實(shí)數(shù)恒成立,即.

          ,則,由得,,

          所以當(dāng)時(shí),,函數(shù)在區(qū)間上為減函數(shù),

          當(dāng)時(shí),,函數(shù)在區(qū)間上為增函數(shù),

          所以當(dāng)時(shí),取得最小值.

          所以,即.

          又由已知得,所以,實(shí)數(shù)的取值范圍是.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓,、為橢圓的左、右焦點(diǎn),為橢圓上一點(diǎn),且.

          1)求橢圓的標(biāo)準(zhǔn)方程;

          2)設(shè)直線,過點(diǎn)的直線交橢圓于、兩點(diǎn),線段的垂直平分線分別交直線、直線、兩點(diǎn),當(dāng)最小時(shí),求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓過點(diǎn),且橢圓的一個(gè)頂點(diǎn)的坐標(biāo)為.過橢圓的右焦點(diǎn)的直線與橢圓交于不同的兩點(diǎn),,不同于點(diǎn)),直線與直線交于點(diǎn).連接,過點(diǎn)的垂線與直線交于點(diǎn)

          (1)求橢圓的方程,并求點(diǎn)的坐標(biāo);

          (2)求證:,三點(diǎn)共線.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】公平正義是社會(huì)主義和諧社會(huì)的重要特征,是社會(huì)主義法治理念的價(jià)值追求.“考試作為一種公平公正選拔人才的有效途徑,正被廣泛采用.每次考試過后,考生最關(guān)心的問題是:自己的考試名次是多少?自已能否被錄取?能獲得什么樣的職位? 某單位準(zhǔn)備通過考試(按照高分優(yōu)先錄取的原則)錄用名,其中個(gè)高薪職位和個(gè)普薪職位.實(shí)際報(bào)名人數(shù)為名,考試滿分為.(一般地,對于一次成功的考試來說,考試成績應(yīng)服從正態(tài)分布. )考試后考試成績的部分統(tǒng)計(jì)結(jié)果如下:

          考試平均成績是分,分及其以上的高分考生.

          (1)最低錄取分?jǐn)?shù)是多少?(結(jié)果保留為整數(shù))

          (2)考生甲的成績?yōu)?/span>分,若甲被錄取,能否獲得高薪職位?若不能被錄取,請說明理由.

          參考資料:(1)當(dāng)時(shí),令,則.

          (2)當(dāng)時(shí),.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某市在開展創(chuàng)建全國文明城市活動(dòng)中,工作有序扎實(shí),成效顯著,尤其是城市環(huán)境衛(wèi)生大為改觀,深得市民好評.“創(chuàng)文過程中,某網(wǎng)站推出了關(guān)于環(huán)境治理和保護(hù)問題情況的問卷調(diào)查,現(xiàn)從參與問卷調(diào)查的人群中隨機(jī)選出200人,并將這200人按年齡分組:第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示.

          1)求出a的值;

          2)若已從年齡較小的第1,2組中用分層抽樣的方法抽取5人,現(xiàn)要再從這5人中隨機(jī)抽取3人進(jìn)行問卷調(diào)查,求第2組恰好抽到2人的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),斜率為的直線與相切于點(diǎn).

          (Ⅰ)求的單調(diào)區(qū)間;

          (Ⅱ)當(dāng)實(shí)數(shù)時(shí),討論的極值點(diǎn).

          (Ⅲ)證明:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)整數(shù)集合,其中 ,且對于任意,若,則

          1)請寫出一個(gè)滿足條件的集合;

          2)證明:任意;

          3)若,求滿足條件的集合的個(gè)數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,等腰梯形中,,,中點(diǎn),交于點(diǎn),將沿折起,使點(diǎn)到達(dá)點(diǎn)的位置(平面).

          1)證明:平面平面;

          2)若,試判斷線段上是否存在一點(diǎn)(不含端點(diǎn)),使得直線與平面所成角的正弦值為,若存在,求出的值;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          求函數(shù)的單調(diào)區(qū)間;

          如果對于任意的,總成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案