日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知拋物線的準線與x軸的交點為H,點F為拋物線的焦點,點P在拋物線上且,當k最大時,點P恰好在以H,F為焦點的雙曲線上,則k的最大值為_____,此時該雙曲線的離心率為_____

          【答案】1

          【解析】

          畫出拋物線,過拋物線準線于,連接,設直線的傾斜角為,由拋物線定義可得,由題意當k最大時,取得最小值.而當取得最小時,直線與拋物線相切,設出直線方程,聯(lián)立拋物線可求得,進而得切點坐標,即可由雙曲線定義及幾何性質(zhì)求得離心率.

          根據(jù)題意畫出拋物線,過拋物線準線于,連接.

          由拋物線定義可知,由,(),

          設直線的傾斜角為,則

          可得,

          k最大時,取得最小值,且,

          取得最小值時直線與拋物線相切,

          設直線的方程為,

          ,化簡可得,

          因為直線與拋物線相切,則

          解得,由可得,同時可得切點橫坐標為,

          將切點橫坐標帶入拋物線可得,

          因為點P恰好在以H,F為焦點的雙曲線上,

          由雙曲線定義及兩點間距離公式可得

          ,

          所以雙曲線離心率為

          故答案為:1;.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,已知矩形ABCD,,,AF⊥平面ABC,且.E為線段DC上一點,沿直線AE將△ADE翻折成,M的中點,則三棱錐體積的最小值是________.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在多面體中,兩兩垂直,四邊形是邊長為2的正方形,ACDGEF,且.

          1)證明:平面.

          2)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】為貫徹落實黨中央全面建設小康社會的戰(zhàn)略部署,某貧困地區(qū)的廣大黨員干部深入農(nóng)村積極開展“精準扶貧”工作.經(jīng)過多年的精心幫扶,截至2018年底,按照農(nóng)村家庭人均年純收入8000元的小康標準,該地區(qū)僅剩部分家庭尚未實現(xiàn)小康.20197月,為估計該地能否在2020年全面實現(xiàn)小康,統(tǒng)計了該地當時最貧困的一個家庭201916月的人均月純收入,作出散點圖如下:

          根據(jù)相關性分析,發(fā)現(xiàn)其家庭人均月純收入與時間代碼之間具有較強的線性相關關系(記20191月、2月……分別為,,…,依此類推),由此估計該家庭2020年能實現(xiàn)小康生活.20201月突如其來的新冠肺炎疫情影響了奔小康的進展,該家庭2020年第一季度每月的人均月純收入均只有201912月的預估值的.

          1)求該家庭20203月份的人均月純收人;

          2)如果以該家庭3月份人均月純收入為基數(shù),以后每月的增長率為,為使該家庭2020年能實現(xiàn)小康生活,至少應為多少?(結(jié)果保留兩位小數(shù))

          參考數(shù)據(jù):,,,.

          參考公式:線性回歸方程中,,

          ,.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】生男生女都一樣,女兒也是傳后人.由于某些地區(qū)仍然存在封建傳統(tǒng)思想,頭胎的男女情況可能會影響生二孩的意愿,現(xiàn)隨機抽取某地200戶家庭進行調(diào)查統(tǒng)計.200戶家庭中,頭胎為女孩的頻率為0.5,生二孩的頻率為0.525,其中頭胎生女孩且生二孩的家庭數(shù)為60.

          1)完成下列列聯(lián)表,并判斷能否有95%的把握認為是否生二孩與頭胎的男女情況有關;

          生二孩

          不生二孩

          合計

          頭胎為女孩

          60

          頭胎為男孩

          合計

          200

          2)在抽取的200戶家庭的樣本中,按照分層抽樣的方法在生二孩的家庭中抽取了7戶,進一步了解情況,在抽取的7戶中再隨機抽取4戶,求抽到的頭胎是女孩的家庭戶數(shù)的分布列及數(shù)學期望.

          附:

          0.15

          0.05

          0.01

          0.001

          2.072

          3.841

          6.635

          10.828

          (其中.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】《九章算術·均輸》中有如下問題:今有五人分十錢,令上二人所得與下三人等,問各得幾何.其意思為已知甲、乙、丙、丁、戊五人分10錢,甲、乙兩人所得與丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差數(shù)列,問五人各得多少錢?是古代的一種重量單位).這個問題中,甲所得為(

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設函數(shù)f(x)=丨x+a+1丨+丨x-丨,(a>0)。

          (1)證明:f(x)≥5;

          (2)若f(1)<6成立,求實數(shù)a的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知動圓Q經(jīng)過定點,且與定直線相切(其中a為常數(shù),且.記動圓圓心Q的軌跡為曲線C.

          1)求C的方程,并說明C是什么曲線?

          2)設點P的坐標為,過點P作曲線C的切線,切點為A,若過點P的直線m與曲線C交于MN兩點,則是否存在直線m,使得?若存在,求出直線m斜率的取值范圍;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在平面四邊形中,等邊三角形,,以為折痕將折起,使得平面平面

          (1)設的中點,求證:平面

          (2)若與平面所成角的正切值為,求二面角的余弦值.

          查看答案和解析>>

          同步練習冊答案