【題目】《九章算術(shù)·均輸》中有如下問題:“今有五人分十錢,令上二人所得與下三人等,問各得幾何.”其意思為“已知甲、乙、丙、丁、戊五人分10錢,甲、乙兩人所得與丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差數(shù)列,問五人各得多少錢?”(“錢”是古代的一種重量單位).這個問題中,甲所得為( )
A.錢B.
錢C.
錢D.
錢
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體ABCD﹣A1B1C1D1的棱長為1,線段B1D1上有兩個動點(diǎn)E、F,且EF=.則下列結(jié)論中正確的個數(shù)為
①AC⊥BE;
②EF∥平面ABCD;
③三棱錐A﹣BEF的體積為定值;
④的面積與
的面積相等,
A.4B.3C.2D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的準(zhǔn)線與x軸的交點(diǎn)為H,點(diǎn)F為拋物線的焦點(diǎn),點(diǎn)P在拋物線上且
,當(dāng)k最大時,點(diǎn)P恰好在以H,F為焦點(diǎn)的雙曲線上,則k的最大值為_____,此時該雙曲線的離心率為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的準(zhǔn)線與x軸的交點(diǎn)為H,點(diǎn)F為拋物線的焦點(diǎn),點(diǎn)P在拋物線上且
,當(dāng)k最大時,點(diǎn)P恰好在以H,F為焦點(diǎn)的雙曲線上,則k的最大值為_____,此時該雙曲線的離心率為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中a為非零常數(shù).
討論
的極值點(diǎn)個數(shù),并說明理由;
若
,
證明:
在區(qū)間
內(nèi)有且僅有1個零點(diǎn);
設(shè)
為
的極值點(diǎn),
為
的零點(diǎn)且
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左頂點(diǎn)為
,右焦點(diǎn)為
,點(diǎn)
在橢圓
上.
(1)求橢圓的方程;
(2)若直線與橢圓
交于
兩點(diǎn),直線
分別與
軸交于點(diǎn)
,在
軸上,是否存在點(diǎn)
,使得無論非零實數(shù)
怎樣變化,總有
為直角?若存在,求出點(diǎn)
的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列的前
項和為
,若存在正整數(shù)
,且
,使得
,
同時成立,則稱數(shù)列
為“
數(shù)列”.
(1)若首項為,公差為
的等差數(shù)列
是“
數(shù)列”,求
的值;
(2)已知數(shù)列為等比數(shù)列,公比為
.
①若數(shù)列為“
數(shù)列”,
,求
的值;
②若數(shù)列為“
數(shù)列”,
,求證:
為奇數(shù),
為偶數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長為2的正方體中,點(diǎn)M是對角線
上的點(diǎn)(點(diǎn)M與A、
不重合),則下列結(jié)論正確的個數(shù)為( )
①存在點(diǎn)M,使得平面平面
;
②存在點(diǎn)M,使得平面
;
③若的面積為S,則
;
④若、
分別是
在平面
與平面
的正投影的面積,則存在點(diǎn)M,使得
.
A.1個B.2個C.3個D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com