日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù),且滿足.

          1)判斷函數(shù)上的單調(diào)性,并用定義證明;

          2)設(shè)函數(shù),若上有兩個不同的零點,求實數(shù)的取值范圍;

          3)若存在實數(shù),使得關(guān)于的方程恰有4個不同 的正根,求實數(shù)的取值范圍.

          【答案】1上為增函數(shù);證明見解析;(2;(3.

          【解析】

          (1)可得,再判斷函數(shù)上的單調(diào)性即可.

          (2)根據(jù)(1)中的單調(diào)性,再求解上的單調(diào)性,再根據(jù)函數(shù)性質(zhì)進行范圍分析即可.

          (3)將方程化簡為,利用復(fù)合函數(shù)零點的方法,先分析關(guān)于的二次函數(shù)的根的問題,再根據(jù)零點存在性定理列式求不等式即可.

          1)由,得0.

          因為,所以,所以.

          當(dāng)時,,任取,且,

          ,

          因為,則,,

          所以上為增函數(shù);

          2)由(1)可知,上為增函數(shù),當(dāng)時,

          同理可得上為減函數(shù),當(dāng)時,.

          所以;

          3)方程可化為

          .

          設(shè),方程可化為.

          要使原方程有4個不同的正根,

          則方程有兩個不等的根,

          則有,解得,

          所以實數(shù)m的取值范圍為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線C:y2=2x,過點(2,0)的直線l交C于A,B兩點,圓M是以線段AB為直徑的圓.

          (1)證明:坐標(biāo)原點O在圓M上;

          (2)設(shè)圓M過點P(4,-2),求直線l與圓M的方程.

          【答案】(1)見解析;(2)

          【解析】(1)證明略;(2)直線的方程為,圓的方程為.或直線的方程為,圓的方程為

          試題分析:(1)設(shè)出點的坐標(biāo),聯(lián)立直線與拋物線的方程,由斜率之積為可得,即得結(jié)論;(2)結(jié)合(1)的結(jié)論求得實數(shù)的值,分類討論即可求得直線的方程和圓的方程.

          試題解析:(1)設(shè),.

          可得,則.

          ,故.

          因此的斜率與的斜率之積為,所以.

          故坐標(biāo)原點在圓上.

          (2)由(1)可得.

          故圓心的坐標(biāo)為,圓的半徑.

          由于圓過點,因此,故

          ,

          由(1)可得.

          所以,解得.

          當(dāng)時,直線的方程為,圓心的坐標(biāo)為,圓的半徑為,圓的方程為.

          當(dāng)時,直線的方程為,圓心的坐標(biāo)為,圓的半徑為,圓 的方程為.

          【名師點睛】直線與拋物線的位置關(guān)系和直線與橢圓、雙曲線的位置關(guān)系類似,一般要用到根與系數(shù)的關(guān)系;在解決直線與拋物線的位置關(guān)系時,要特別注意直線與拋物線的對稱軸平行的特殊情況.中點弦問題,可以利用點差法,但不要忘記驗證或說明中點在曲線內(nèi)部.

          型】解答
          結(jié)束】
          21

          【題目】已知函數(shù)

          (1)若,求a的值;

          (2)設(shè)m為整數(shù),且對于任意正整數(shù)n,,求m的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,從參加環(huán)保知識競賽的學(xué)生中抽出60名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問題:

          (1)這一組的頻數(shù)、頻率分別是多少?

          (2)估計這次環(huán)保知識競賽的及格率(60分及以上為及格).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知某商品在過去20天的日銷售量和日銷售價格均為銷售時間t(天)的函數(shù),日銷售量(單位:件)近似地滿足: ,日銷售價格(單位:元)近似地滿

          足:

          (I)寫出該商品的日銷售額S關(guān)于時間t的函數(shù)關(guān)系;

          (Ⅱ)當(dāng)t等于多少時,日銷售額S最大?并求出最大值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】3名男生和3名女生共6人站成一排,若男生甲不站兩端,且不與男生乙相鄰,3名女生有且只有2名女生相鄰,則不同排法的種數(shù)是_____.(用數(shù)字作答)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)有兩個不同零點.設(shè)函數(shù)的定義域為,且的最大值記為,最小值記為

          1)求(用表示);

          2)當(dāng)時,試問以為長度的線段能否構(gòu)成一個三角形,如果不一定,進一步求出的取值范圍,使它們能構(gòu)成一個三角形;

          3)求

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某企業(yè)常年生產(chǎn)一種出口產(chǎn)品,根據(jù)預(yù)測可知,進入世紀(jì)以來,該產(chǎn)品的產(chǎn)量平穩(wěn)增長.記年為第年,且前年中,第年與年產(chǎn)量萬件之間的關(guān)系如下表所示:

          近似符合以下三種函數(shù)模型之一:,

          (1)找出你認(rèn)為最適合的函數(shù)模型,并說明理由,然后選取其中你認(rèn)為最適合的數(shù)據(jù)求出相應(yīng)的解析式;

          (2)因遭受某國對該產(chǎn)品進行反傾銷的影響,年的年產(chǎn)量比預(yù)計減少,試根據(jù)所建立的函數(shù)模型,確定年的年產(chǎn)量.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某公司將進貨單價為8元一個的商品按10元一個出售,每天可以賣出100個,若這種商品的售價每個上漲1元,則銷售量就減少10個.

          1)求售價為13元時每天的銷售利潤;

          2)求售價定為多少元時,每天的銷售利潤最大,并求最大利潤.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知集合Z={(x,y)|x∈[0,2],y[-1,1]}.

          (1)若x,yZ,求x+y≥0的概率;

          (2)若x,yR,求x+y≥0的概率.

          查看答案和解析>>

          同步練習(xí)冊答案