【題目】給出如下結(jié)論:
①函數(shù)是奇函數(shù);
②存在實(shí)數(shù),使得
;
③若是第一象限角且
,則
;
④是函數(shù)
的一條對稱軸方程;
⑤函數(shù)的圖形關(guān)于點(diǎn)
成中心對稱圖形.
其中正確的結(jié)論的序號是__________.(填序號)
【答案】①④
【解析】分析:①由降冪公式化簡函數(shù)表達(dá)式,然后判斷奇偶性即可;
②可由sinα+cosα=sin(x+
)≤
判斷;
③根據(jù)正切函數(shù)的圖象與性質(zhì)判斷即可;
④⑤根據(jù)對稱軸和對稱中心的性質(zhì)判斷.
詳解:①函數(shù)=﹣sin
,是奇函數(shù),正確;
②存在實(shí)數(shù)α,使得sinα+cosα=sin(α+
)≤
,故錯(cuò)誤;
③α,β是第一象限角且α<β.例如:45°<30°+360°,但tan45°>tan(30°+360°),即tanα<tanβ不成立;
④是函數(shù)
,f(
)=﹣1,是一條對稱軸方程,故正確;
⑤函數(shù)的圖象關(guān)于點(diǎn)
,f(
)=1,不是對稱中心,故錯(cuò)誤.
故答案為:①④.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機(jī)抽取8次,記錄如下:
甲 82 81 79 78 95 88 93 84
乙 92 95 80 75 83 80 90 85
(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從統(tǒng)計(jì)學(xué)的角度(在平均數(shù)、方差或標(biāo)準(zhǔn)差中選兩個(gè))分析,你認(rèn)為選派哪位學(xué)生參加合適?請說明理由
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】生于瑞士的數(shù)學(xué)巨星歐拉在1765年發(fā)表的《三角形的幾何學(xué)》一書中有這樣一個(gè)定理:“三角形的外心、垂心和重心都在同一直線上!边@就是著名的歐拉線定理,在中,
分別是外心、垂心和重心,
為
邊的中點(diǎn),下列四個(gè)結(jié)論:(1)
;(2)
;(3)
;(4)
正確的個(gè)數(shù)為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某公園摩天輪的半徑為,圓心距地面的高度為
,摩天輪做勻速轉(zhuǎn)動,每
轉(zhuǎn)一圈,摩天輪上的點(diǎn)
的起始位置在最低點(diǎn)處.
(1)已知在時(shí)刻時(shí)
距離地面的高度
,(其中
),求
時(shí)
距離地面的高度;
(2)當(dāng)離地面以上時(shí),可以看到公園的全貌,求轉(zhuǎn)一圈中有多少時(shí)間可以看到公園的全貌?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列和等比數(shù)列
滿足
,
,
.
(1)求的通項(xiàng)公式;
(2)求和: .
【答案】(1);(2)
.
【解析】試題分析:(1)根據(jù)等差數(shù)列的
,
,列出關(guān)于首項(xiàng)
、公差
的方程組,解方程組可得
與
的值,從而可得數(shù)列
的通項(xiàng)公式;(2)利用已知條件根據(jù)題意列出關(guān)于首項(xiàng)
,公比
的方程組,解得
、
的值,求出數(shù)列
的通項(xiàng)公式,然后利用等比數(shù)列求和公式求解即可.
試題解析:(1)設(shè)等差數(shù)列{an}的公差為d. 因?yàn)?/span>a2+a4=10,所以2a1+4d=10.解得d=2.
所以an=2n1.
(2)設(shè)等比數(shù)列的公比為q. 因?yàn)?/span>b2b4=a5,所以b1qb1q3=9.
解得q2=3.所以.
從而.
【題型】解答題
【結(jié)束】
18
【題目】已知命題:實(shí)數(shù)
滿足
,其中
;命題
:方程
表示雙曲線.
(1)若,且
為真,求實(shí)數(shù)
的取值范圍;
(2)若是
的充分不必要條件,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,在底面
中,
是
的中點(diǎn),
是棱
的中點(diǎn),
=
=
=
=
=
=
.
(1)求證: 平面
(2)求證:平面底面
;
(3)試求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前
項(xiàng)和為
,點(diǎn)
在直線
上.數(shù)列
滿足
且
,前9項(xiàng)和為153.
(1)求數(shù)列、
的通項(xiàng)公式;
(2)設(shè),數(shù)列
的前
項(xiàng)和為
,求
及使不等式
對一切
都成立的最小正整數(shù)
的值;
(3)設(shè),問是否存在
,使得
成立?若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面
是平行四邊形,
,側(cè)面
底面
,
,
,
,
分別為
,
的中點(diǎn),點(diǎn)
在線段
上.
(1)求證: 平面
;
(2)若直線與平面
所成的角和直線
與平面
所成的角相等,求
的值.
【答案】(1)證明見解析;(2) .
【解析】試題分析:
(Ⅰ)在平行四邊形中,由條件可得
,進(jìn)而可得
。由側(cè)面
底面
,得
底面
,故得
,所以可證得
平面
.(Ⅱ)先證明平面
平面
,由面面平行的性質(zhì)可得
平面
.(Ⅲ)建立空間直角坐標(biāo)系,通過求出平面的法向量,根據(jù)線面角的向量公式可得
。
試題解析:
(Ⅰ)證明:在平行四邊形中,
∵,
,
,
∴,
∴,
∵,
分別為
,
的中點(diǎn),
∴,
∴,
∵側(cè)面底面
,且
,
∴底面
,
又底面
,
∴,
又,
平面
,
平面
,
∴平面
.
(Ⅱ)證明:∵為
的中點(diǎn),
為
的中點(diǎn),
∴,
又平面
,
平面
,
∴平面
,
同理平面
,
又,
平面
,
平面
,
∴平面平面
,
又平面
,
∴平面
.
(Ⅲ)解:由底面
,
,可得
,
,
兩兩垂直,
建立如圖空間直角坐標(biāo)系,
則,
,
,
,
,
,
所以,
,
,
設(shè),則
,
∴,
,
易得平面的法向量
,
設(shè)平面的法向量為
,則:
由,得
,
令,得
,
∵直線與平面
所成的角和此直線與平面
所成的角相等,
∴,即
,
∴,
解得或
(舍去),
故.
點(diǎn)睛:用向量法確定空間中點(diǎn)的位置的方法
根據(jù)題意建立適當(dāng)?shù)目臻g直角坐標(biāo)系,由條件確定有關(guān)點(diǎn)的坐標(biāo),運(yùn)用共線向量用參數(shù)(參數(shù)的范圍要事先確定)確定出未知點(diǎn)的坐標(biāo),根據(jù)向量的運(yùn)算得到平面的法向量或直線的方向向量,根據(jù)所給的線面角(或二面角)的大小進(jìn)行運(yùn)算,進(jìn)而求得參數(shù)的值,通過與事先確定的參數(shù)的范圍進(jìn)行比較,來判斷參數(shù)的值是否符合題意,進(jìn)而得出點(diǎn)是否存在的結(jié)論。
【題型】解答題
【結(jié)束】
21
【題目】如圖,橢圓上的點(diǎn)到左焦點(diǎn)的距離最大值是
,已知點(diǎn)
在橢圓上,其中
為橢圓的離心率.
(1)求橢圓的方程;
(2)過原點(diǎn)且斜率為的直線交橢圓于
、
兩點(diǎn),其中
在第一象限,它在
軸上的射影為點(diǎn)
,直線
交橢圓于另一點(diǎn)
.證明:對任意的
,點(diǎn)
恒在以線段
為直徑的圓內(nèi).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com