日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在四棱錐中,底面ABCD是邊長為6的菱形,且,平面ABCD,F是棱PA上的一個動點,EPD的中點.

          求證:

          PC與平面BDF所成角的正弦值;

          側(cè)面PAD內(nèi)是否存在過點E的一條直線,使得該直線上任一點MC的連線,都滿足平面BDF,若存在,求出此直線被直線PA、PD所截線段的長度,若不存在,請明理由.

          【答案】(Ⅰ)詳見解析;(Ⅱ)

          【解析】

          證明平面PAC即可得出;建立空間坐標(biāo)系,求出平面BDF的法向量,計算的夾角的余弦值即可;PF的中點G,證明平面,即可得出結(jié)論.

          證明:平面ABCD平面ABCD,

          ,

          四邊形ABCD是菱形,

          ,

          平面PAC,平面PAC

          平面PAC,

          平面PAC,

          解:設(shè)AC,BD交于點O,以O為坐標(biāo)原點,以OB,OC,平面ABCD過點O的垂線為坐標(biāo)軸建立空間直角坐標(biāo)系,

          0,0,3,,

          ,0,,,

          設(shè)平面BDF的法向量為y,,則,即,

          可得,即2,

          ,

          與平面BDF所成角的正弦值為,

          PF的中點G,連接FG,CG

          ,G分別是PD,PF的中點,

          ,又平面BDF平面BDF,

          平面BDF,

          O分別是AG,AC的中點,

          ,又平面BDF平面BDF,

          平面BDF

          平面CEG,平面CEG,

          平面平面BDF,

          側(cè)面PAD內(nèi)存在過點E的一條直線EG,使得該直線上任一點MC的連線,

          都滿足平而BDF

          此直線被直線PA、PD所截線段為

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(2017高考新課標(biāo)Ⅲ,19)如圖,四面體ABCD中,ABC是正三角形,ACD是直角三角形,∠ABD=CBD,AB=BD.

          (1)證明:平面ACD⊥平面ABC;

          (2)過AC的平面交BD于點E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角DAEC的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)橢圓的左、右焦點分別為,,下頂點為,橢圓的離心率是,的面積是.

          1)求橢圓的標(biāo)準(zhǔn)方程.

          2)直線與橢圓交于,兩點(異于點),若直線與直線的斜率之和為1,證明:直線恒過定點,并求出該定點的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知,實數(shù),函數(shù),函數(shù).

          (Ⅰ)令,當(dāng)時,試討論函數(shù)在其定義域內(nèi)的單調(diào)性;

          (Ⅱ)當(dāng)時,令,是否存在實數(shù),使得對于函數(shù)定義域中的任意實數(shù),均存在實數(shù),有成立?若存在,求出實數(shù)的取值集合;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在某區(qū)“創(chuàng)文明城區(qū)”簡稱“創(chuàng)城”活動中,教委對本區(qū)A,B,C,D四所高中校按各校人數(shù)分層抽樣調(diào)查,將調(diào)查情況進行整理后制成如表:

          學(xué)校

          A

          B

          C

          D

          抽查人數(shù)

          50

          15

          10

          25

          “創(chuàng)城”活動中參與的人數(shù)

          40

          10

          9

          15

          注:參與率是指:一所學(xué)校“創(chuàng)城”活動中參與的人數(shù)與被抽查人數(shù)的比值

          假設(shè)每名高中學(xué)生是否參與“創(chuàng)城”活動是相互獨立的.

          若該區(qū)共2000名高中學(xué)生,估計A學(xué)校參與“創(chuàng)城”活動的人數(shù);

          在隨機抽查的100名高中學(xué)生中,從A,C兩學(xué)校抽出的高中學(xué)生中各隨機抽取1名學(xué)生,求恰有1人參與“創(chuàng)城”活動的概率;

          若將表中的參與率視為概率,從A學(xué)校高中學(xué)生中隨機抽取3人,求這3人參與“創(chuàng)城”活動人數(shù)的分布列及數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐PABCD中,底面ABCD為菱形,∠DAB60°,PD⊥底面ABCD,PDDC2E,FG分別是AB,PBCD的中點.

          1)求證:ACPB;

          2)求證:GF∥平面PAD;

          3)求點G到平面PAB的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】古希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):平面內(nèi)到兩個定點,的距離之比為定值的點的軌跡是圓”.后來,人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓.在平面直角坐標(biāo)系中,,,點滿足.設(shè)點的軌跡為,下列結(jié)論正確的是(

          A.的方程為

          B.上存在點,使得

          C.當(dāng),三點不共線時,射線的平分線

          D.在三棱錐中,,且,,,該三棱錐體積最大值為12

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),.

          (I)討論的單調(diào)性;

          (II)若恒成立,證明:當(dāng)時,.

          (III)在(II)的條件下,證明:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,在底面為正方形的四棱錐P—ABCD中,AB=2,PA=4PB=PD=,ACBD相交于點O,E,G分別為PDCD中點,

          (1)求證:EO//平面PBC

          (2)設(shè)線段BC上點F滿足BC=3BF,求三棱錐E—OFG的體積.

          查看答案和解析>>

          同步練習(xí)冊答案