日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題滿分13分) 已知等差數(shù)列滿足:,,的前n項和為
          (Ⅰ)求通項公式及前n項和;
          (Ⅱ)令=(nN*),求數(shù)列的前n項和

          (Ⅰ)=;(Ⅱ)=。

          解析試題分析:(1)結(jié)合已知中的等差數(shù)列的項的關(guān)系式,聯(lián)立方程組得到其通項公式和前n項和。
          (2)在第一問的基礎(chǔ)上,得到bn的通項公式,進(jìn)而分析運用裂項法得到。
          解:(Ⅰ)設(shè)等差數(shù)列的公差為d,由已知可得,
          解得,……………2分,
          所以;………4分
          ==………6分
          (Ⅱ)由(Ⅰ)知,
          所以===   ……10分
          所以== 
          即數(shù)列的前n項和=   ……13分
          考點:本試題主要考查了等差數(shù)列的通項公式以及前n項和的求解運用。
          點評:解決該試題的關(guān)鍵是能得到等差數(shù)列的通項公式,然后求解新數(shù)列的通項公式,利用裂項的思想來得到求和。易錯點就是裂項的準(zhǔn)確表示。

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分12分)
          等差數(shù)列中,前項和為,且
          (Ⅰ)求通項公式;
          (Ⅱ)設(shè),求數(shù)列項的和

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知數(shù)列為遞減的等差數(shù)列,是數(shù)列的前項和,且.
          ⑴ 求數(shù)列的前項和
          ⑵ 令,求數(shù)列的前項和

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分14分)
          (1)已知正項等差數(shù)列的前項和為,若,且成等比數(shù)列.求的通項公式. 
          (2)數(shù)列中,.求的通項公式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本題滿分12分)已知等差數(shù)列中,前5項和前10項的和分別為25和100。數(shù)列中,。
          (1)求、;
          (2)設(shè),求。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本題滿分14分)
          若等差數(shù)列的前項和為,且滿足為常數(shù),則稱該數(shù)列為數(shù)列.
          (1)判斷是否為數(shù)列?并說明理由;
          (2)若首項為且公差不為零的等差數(shù)列數(shù)列,試求出該數(shù)列的通項公式;
          (3)若首項為,公差不為零且各項為正數(shù)的等差數(shù)列數(shù)列,正整數(shù)滿足,求的最小值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題14分)
          在等差數(shù)列中,,.
          (1)求數(shù)列的通項
          (2)令,證明:數(shù)列為等比數(shù)列;
          (3)求數(shù)列的前項和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知數(shù)列的前項和為,且,數(shù)列中,,點在直線上.
          (I)求數(shù)列的通項;
          (II) 設(shè),求數(shù)列的前n項和,并求滿足的最大正整數(shù)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知數(shù)列的前n項和,數(shù)列的前n項和,,
          (1)求,的通項公式;
          (2)設(shè),是否存在正整數(shù),使得恒成立?若存在,求出的值;若不存在,說明理由。

          查看答案和解析>>

          同步練習(xí)冊答案