日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓的離心率為.

          (Ⅰ)求橢圓的方程;

          (Ⅱ)設(shè)直線過(guò)點(diǎn)且與橢圓相交于兩點(diǎn).過(guò)點(diǎn)作直線的垂線,垂足為.證明直線過(guò)軸上的定點(diǎn).

          【答案】1;(2)見(jiàn)解析.

          【解析】

          (1)由離心率列方程可求得橢圓方程;

          (2)當(dāng)直線AB的斜率不存在時(shí),直線BD過(guò)點(diǎn)(20).當(dāng)直線AB的斜率存在時(shí),設(shè)直線ABy=kx-1),聯(lián)立方程組,消去y整理得:(1+3k2x2-6k2x+3k2-3=0.利用韋達(dá)定理、直線方程,結(jié)合已知條件求出直線BD過(guò)x軸上的定點(diǎn).

          (1)解:由題意可得,解得,

          所以橢圓C的方程為

          (2)直線BD恒過(guò)x軸上的定點(diǎn)N20).證明如下

          a)當(dāng)直線l斜率不存在時(shí),直線l的方程為x=1

          不妨設(shè)A1,),B1),D3,).

          此時(shí),直線BD的方程為:y=x-2),所以直線BD過(guò)點(diǎn)(2,0).

          b)當(dāng)直線l的斜率存在時(shí),設(shè)Ax1,y1),Bx2,y2),直線ABy=kx-1),D3,y1).

          得:(1+3k2x2-6k2x+3k2-3=0

          所以x1+x2=x1x2=.……(*

          直線BDy-y1=x-3),只需證明直線BD過(guò)點(diǎn)(20)即可.

          y=0,得x-3=,所以x===

          即證,即證.

          將(*)代入可得.

          所以直線BD過(guò)點(diǎn)(20

          綜上所述,直線BD恒過(guò)x軸上的定點(diǎn)(2,0).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖是函數(shù)的部分圖象,將函數(shù)f(x)的圖象向右平移個(gè)單位長(zhǎng)度得到g(x)的圖象,給出下列四個(gè)命題:

          ①函數(shù)f(x)的表達(dá)式為;

          ②g(x)的一條對(duì)稱軸的方程可以為;

          ③對(duì)于實(shí)數(shù)m,恒有;

          ④f(x)+g(x)的最大值為2.其中正確的個(gè)數(shù)有(  )

          A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù),的導(dǎo)函數(shù),且,.

          1)求的解析式,并判斷零點(diǎn)的個(gè)數(shù);

          2)若,且對(duì)任意的恒成立,求k的最大值.(參考數(shù)據(jù):

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)fx=ax2+a-2lnx+1aR).

          1)若函數(shù)在點(diǎn)(1,f1))處的切線平行于直線y=4x+3,求a的值;

          2)令cx=fx+3-alnx+2a,討論cx)的單調(diào)性;

          3a=1時(shí),函數(shù)y=fx)圖象上的所有點(diǎn)都落在區(qū)域內(nèi),求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系xOy中,已知點(diǎn)O(0,0),M(-4,0),N(4,0),P(0,-2),Q(0,2),H(4,2).線段OM上的動(dòng)點(diǎn)A滿足;線段HN上的動(dòng)點(diǎn)B滿足.直線PA與直線QB交于點(diǎn)L,設(shè)直線PA的斜率記為k,直線QB的斜率記為k',則kk'的值為______;當(dāng)λ變化時(shí),動(dòng)點(diǎn)L一定在______(填“圓、橢圓、雙曲線、拋物線”之中的一個(gè))上.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四棱錐中,底面為矩形,平面平面,,,,中點(diǎn).

          (Ⅰ)求證:∥平面;

          (Ⅱ)求二面角的余弦值;

          (Ⅲ)在棱上是否存在點(diǎn),使得?若存在,求的值;若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系中,如果都是整數(shù),就稱點(diǎn)為整點(diǎn),下列命題中正確的是_____________(寫出所有正確命題的編號(hào))

          ①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過(guò)任何整點(diǎn)

          ②如果都是無(wú)理數(shù),則直線不經(jīng)過(guò)任何整點(diǎn)

          ③直線經(jīng)過(guò)無(wú)窮多個(gè)整點(diǎn),當(dāng)且僅當(dāng)經(jīng)過(guò)兩個(gè)不同的整點(diǎn)

          ④直線經(jīng)過(guò)無(wú)窮多個(gè)整點(diǎn)的充分必要條件是:都是有理數(shù)

          ⑤存在恰經(jīng)過(guò)一個(gè)整點(diǎn)的直線

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知雙曲線的焦點(diǎn),漸近線方程為,直線過(guò)點(diǎn)且與雙曲線有且只有一個(gè)公共點(diǎn).

          1)求雙曲線的標(biāo)準(zhǔn)方程;

          2)求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知三棱柱的底面是等邊三角形,側(cè)面底面是棱的中點(diǎn).

          (1)求證:平面平面;

          (2)求平面將該三棱柱分成上下兩部分的體積比.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案