【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點
為極點,以
軸正半軸為極軸,建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)求的普通方程和
的直角坐標(biāo)方程;
(2)直線與
軸的交點為
,經(jīng)過點
的直線
與曲線
交于
兩點,若
,求直線
的傾斜角.
【答案】(1) ,
(2)
或
.
【解析】
(1)利用消去參數(shù)化曲線
為普通方程,運用
,即可化直線
極坐標(biāo)方程為直角坐標(biāo)方程;
(2)將直線方程化為具有幾何意義的參數(shù)方程,代入曲線方程,利用根與系數(shù)關(guān)系結(jié)合直線參數(shù)的幾何意義,即可求解.
(1)曲線的普通方程為
,
因為,所以
,
直線的直角坐標(biāo)方程為
.
(2)點的坐標(biāo)為
,
設(shè)直線的參數(shù)方程為
(
為參數(shù),
為傾斜角),
聯(lián)立直線與曲線
的方程得
.
設(shè)對應(yīng)的參數(shù)分別為
,則
,
所以,
得,且滿足
,
故直線的傾斜角為
或
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的短軸長為4,離心率為
,斜率不為0的直線
與橢圓相交于
,
兩點(
,
異于橢圓的頂點),且以
為直徑的圓過橢圓的右頂點
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線是否過定點,如果過定點,求出該定點的坐標(biāo);如果不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,證明:
在
上恒成立;
(2)若函數(shù)有唯一零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,點P為平面上的動點,過點P作直線l:
的垂線,垂足為Q,且
.
Ⅰ
求動點P的軌跡C的方程;
Ⅱ
設(shè)點P的軌跡C與x軸交于點M,點A,B是軌跡C上異于點M的不同的兩點,且滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,點
在橢圓
上,焦點為
,圓O的直徑為
.
(1)求橢圓C及圓O的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l與圓O相切于第一象限內(nèi)的點P,且直線l與橢圓C交于兩點.記
的面積為
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班有50名學(xué)生,一次考試后數(shù)學(xué)成績ξ~N(110,102),若P(100≤ξ≤110)=0.34,則估計該班學(xué)生數(shù)學(xué)成績在120分以上的人數(shù)為 ( )
A. 10 B. 9 C. 8 D. 7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中有大小相同的紅、黃兩種顏色的球各1個,從中任取1只,有放回地抽取3次.
求:(1)3只全是紅球的概率;
(2)3只顏色全相同的概率;
(3)3只顏色不全相同的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在底面為銳角三角形的直三棱柱中,
是棱
的中點,記直線
與直線
所成角為
,直線
與平面
所成角為
,二面角
的平面角為
,則( )
A.B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com