【題目】已知橢圓的短軸長為4,離心率為
,斜率不為0的直線
與橢圓相交于
,
兩點(
,
異于橢圓的頂點),且以
為直徑的圓過橢圓的右頂點
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線是否過定點,如果過定點,求出該定點的坐標(biāo);如果不過定點,請說明理由.
【答案】(1);(2)過定點,
.
【解析】
(1)根據(jù)橢圓的簡單幾何性質(zhì)可知,,
再結(jié)合
即可求出;
(2)依題設(shè)直線:
,
,
,聯(lián)立直線和橢圓方程求出
,
,再根據(jù)以
為直徑的圓過橢圓的右頂點
可得
,代入化簡可得
,求出
,即可知直線過定點
.
(1)由題可知,
,而
,解得
.
所以橢圓的標(biāo)準(zhǔn)方程為.
(2)由題設(shè)直線:
,
,
,
,
聯(lián)立直線方程與橢圓方程得:,
,
,
,
因為以為直徑的圓過橢圓的右頂點
,
所以,將
,
代入化簡可得,
,解得
或
.
當(dāng)時,直線與橢圓的一個交點為右頂點,與題意不符,舍去.
∴,即直線過定點
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左頂點為
,左、右焦點分別為
,離心率為
,
是橢圓上的一個動點(不與左、右頂點重合),且
的周長為6,點
關(guān)于原點的對稱點為
,直線
交于點
.
(1)求橢圓方程;
(2)若直線與橢圓交于另一點
,且
,求點
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
,離心率為
,
是橢圓上一點,且
面積的最大值為1.
(1)求橢圓的方程;
(2)過的直線交橢圓于
兩點,求
的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年底,湖北省武漢市等多個地區(qū)陸續(xù)出現(xiàn)感染新型冠狀病毒肺炎的患者,為及時有效地對疫情數(shù)據(jù)進行流行病學(xué)統(tǒng)計分析,某地研究機構(gòu)針對該地實際情況,根據(jù)該地患者是否有武漢旅行史與是否有確診病例接觸史,將新冠肺炎患者分為四類:有武漢旅行史(無接觸史),無武漢旅行史(無接觸史),有武漢旅行史(有接觸史)和無武漢旅行史(有接觸史),統(tǒng)計得到以下相關(guān)數(shù)據(jù):
有接觸史 | 無接觸史 | 總計 | |
有武漢旅行史 | |||
無武漢旅行史 | |||
總計 |
(1)請將上面列聯(lián)表填寫完整,并判斷能否在犯錯誤的概率不超過的前提下,認(rèn)為有武漢旅行史與有確診病例接觸史有關(guān)系?
(2)已知在無武漢旅行史的名患者中,有
名無癥狀感染者.現(xiàn)在從無武漢旅行史的
名患者中,選出
名進行病例研究,求
人中至少有
名是無癥狀感染者的概率.
下面的臨界值表供參考:
參考公式:,其中
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點為橢圓C:
(
,
)上一點,
和
分別為橢圓C的左右焦點,點D為橢圓C的上頂點,且
.
(1)橢圓C的方程;
(2)若點A、B、P為橢圓C上三個不同的動點,且滿足,直線
與直線
交于點Q,試判斷動點Q的軌跡與直線
的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名射手在一次射擊中得分為兩個相互獨立的隨機變量ξ,η,已知甲、乙兩名射手在每次射擊中射中的環(huán)數(shù)大于6環(huán),且甲射中10,9,8,7環(huán)的概率分別為0.5,3a,a,0.1,乙射中10,9,8環(huán)的概率分別為0.3,0.3,0.2.
(1)求ξ,η的分布列;
(2)求ξ,η的數(shù)學(xué)期望與方差,并以此比較甲、乙的射擊技術(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點
為極點,以
軸正半軸為極軸,建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)求的普通方程和
的直角坐標(biāo)方程;
(2)直線與
軸的交點為
,經(jīng)過點
的直線
與曲線
交于
兩點,若
,求直線
的傾斜角.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com