日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在如圖所示的幾何體中, , , ,二面角的大小為.

          (1)求證: 平面;

          (2)求平面與平面所成的角(銳角)的大小;

          (3)若的中點,求直線與平面所成的角的大小.

          【答案】(1)見解析;(2);(3)

          【解析】試題分析:(Ⅰ)由已知可得AC⊥CD,AC⊥CB,即BCD為二面角B﹣AC﹣E的平面角,即BCD=60°,求解三角形可得BDDC,再由線面垂直的判定可得AC平面BCD,得到ACBD,進一步得到BD平面ACDE;

          (Ⅱ)由BD平面ACDE,得BD⊥DC,BD⊥DE,可得DB,DC,DE兩兩垂直,分別以DB,DC,DE所在直線為x,y,z軸建立空間直角坐標系,求出所用點的坐標,得到平面BAE與平面BCD的一個法向量,由兩法向量所成角的余弦值可得平面BCD與平面BAE所成的角;

          )若F為AB的中點,由(II)可得,進一步得到,由已知可得平面BDE的一個法向量為,由所成角的余弦值的絕對值可得直線EF與平面BDE所成角的大。

          試題解析:

          1因為,則 ,

          所以為二面角的平面角,即

          中, , ,

          所以,所以,即

          , ,且,可知平面,

          平面,所以,

          又因為 平面, 平面,

          所以平面

          2)由平面, ,,即, 兩兩垂直,

          則以 , 分別為軸, 軸, 軸的正方向建立空間直角坐標系,如圖所示.

          由(I)知, ,

          ,

          依題意 ,

          設平面的一個法向量為,

          ,即,不妨設,可得

          平面可知平面的一個法向量為

          設平面與平面所成的角(銳角)為

          所以,于是,

          所以平面與平面所成的角(銳角)為

          3)若的中點,則由(II)可得,所以,

          依題意平面,可知平面的一個法向量為

          設直線與平面所成角為,則

          ,所以直線與平面所成角的大小

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,曲線與正方形 的邊界相切.

          (1)求的值;

          (2)設直線交曲線,,是否存在這樣的曲線,使得, 成等差數(shù)列?若存在,求出實數(shù)的取值范圍;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點, 軸為極軸建立極坐標系,曲線的極坐標為

          (1)求曲線的普通方程和曲線的直角坐標方程;

          (2)若曲線和曲線有三個公共點,求以這三個公共點為頂點的三角形的面積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】選修4-4:坐標系與參數(shù)方程

          已知在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),曲線的方程為.以坐標原點為極點, 軸的正半軸為極軸建立極坐標系.

          1)求直線和曲線的極坐標方程;

          2)曲線分別交直線和曲線于點,的最大值及相應的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某大學現(xiàn)有6名包含在內的男志愿者和4名包含在內的女志愿者,這10名志愿者要參加第十三屆全運會支援服務工作,從這些人中隨機抽取5人參加田賽服務工作,另外5人參加徑賽服務工作.

          1)求參加田賽服務工作的志愿者中包含但不包含的概率;

          (2)設表示參加徑賽服務工作的女志愿者人數(shù),求隨機變量的分布列與數(shù)學期望.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】經過函數(shù)性質的學習,我們知道:函數(shù)的圖象關于軸成軸對稱圖形的充要條件是為偶函數(shù)”.

          1)若為偶函數(shù),且當時,,求的解析式,并求不等式的解集;

          2)某數(shù)學學習小組針對上述結論進行探究,得到一個真命題:函數(shù)的圖象關于直線成軸對稱圖形的充要條件是為偶函數(shù)”.若函數(shù)的圖象關于直線對稱,且當時,.

          i)求的解析式;

          ii)求不等式的解集.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在多面體中,已知是邊長為2的正方形, 為正三角形, 分別為的中點, , .

          (1)求證: 平面

          (2)求證: 平面;

          3)求與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知正方體ABCD-A1B1C1D1的棱長為2,E為棱CC1的中點,點M在正方形BCC1B1內運動,且直線AM//平面A1DE,則動點M 的軌跡長度為( )

          A. B. π C. 2 D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以平面直角坐標系的原點為極點,正半軸為極軸,取相同的長度單位建立極坐標系,曲線的極坐標方程為.

          (1)求直線和曲線的直角坐標方程,并指明曲線的形狀;

          (2)設直線與曲線交于兩點, 為坐標原點,且,求.

          查看答案和解析>>

          同步練習冊答案