日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)函數(shù)fx)是定義在R上的偶函數(shù),且對任意的xR恒有fx+1)=fx1),已知當(dāng)x[0,1]時(shí),fx)=(1x,則

          2是函數(shù)fx)的一個(gè)周期;

          ②函數(shù)fx)在(1,2)上是減函數(shù),在(2,3)上是增函數(shù);

          ③函數(shù)fx)的最大值是1,最小值是0;

          x1是函數(shù)fx)的一個(gè)對稱軸;

          ⑤當(dāng)x∈(3,4)時(shí),fx)=(x3.

          其中所有正確命題的序號是_____.

          【答案】①②④⑤

          【解析】

          ①根據(jù)fx+1)=fx1),變形為fx+2)=fx),再利用周期的定義判斷.②易知,當(dāng)x[0,1]時(shí),fx)=(1x,是增函數(shù),再利用周期性和奇偶性轉(zhuǎn)化判斷.③根據(jù)②的結(jié)論判斷.④根據(jù)②的結(jié)論判斷.⑤設(shè)x∈(34)時(shí),則有4x=(0,1),再利用周期性和奇偶性再求解.

          fx+1)=fx1),∴fx+2)=f[x+1+1]f[x+1)﹣1]fx),即2是函數(shù)fx)的一個(gè)周期,故①正確;

          當(dāng)x[0,1]時(shí),fx)=(1x為增函數(shù),因?yàn)楹瘮?shù)fx)是定義在R上的偶函數(shù),所以當(dāng)x[10]時(shí),fx)為減函數(shù),

          再由函數(shù)的周期為2,可得(12)上是減函數(shù),在(2,3)上是增函數(shù),故②正確;

          由②得:當(dāng)x2kkZ時(shí),函數(shù)取最小值,當(dāng)x2k+1,kZ時(shí),函數(shù)取最大值1,故③錯(cuò)誤;

          由②和函數(shù)是偶函數(shù)得xkkZ均為函數(shù)圖象的對稱軸,故④正確;

          設(shè)x∈(34),則4x∈(0,1),所以f4x)=f(﹣x)=fx)=(1﹣(4x=(x3,故⑤正確

          故答案為:①②④⑤

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直四棱柱的底面ABCD是菱形,E上任意一點(diǎn).

          1)求證:平面平面;

          2)設(shè),當(dāng)E的中點(diǎn)時(shí),求點(diǎn)E到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線C1的頂點(diǎn)在坐標(biāo)原點(diǎn),準(zhǔn)線為x=﹣3,圓C2:(x32+y21,過圓心C2的直線l與拋物線C1交于點(diǎn)A,B,l與圓C2交于點(diǎn)M,N,且|AM||AN|,則|AM||BM|的最小值為_____

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】隨著銀行業(yè)的不斷發(fā)展,市場競爭越來越激烈,顧客對銀行服務(wù)質(zhì)量的要求越來越高,銀行為了提高柜員,員工的服務(wù)意識,加強(qiáng)評價(jià)管理,工作中讓顧客對服務(wù)作出評價(jià),評價(jià)分為滿意、基本滿意、不滿意三種,某銀行為了比較顧客對男女柜員員工滿意度評價(jià)的差異,在下屬的四個(gè)分行中隨機(jī)抽出40人(男女各半)進(jìn)行分析比較對40人一月中的顧客評價(jià)不滿意的次數(shù)進(jìn)行了統(tǒng)計(jì),按男、女分為兩組,再將每組柜員員工的月不滿意次數(shù)分為5組:[0,5),[5,10),[10,15),[15,20),[20,25],得到如下頻數(shù)分布表.

          分組

          [0,5

          [510

          [10,15

          [1520

          [20,25]

          女柜員

          2

          3

          8

          5

          2

          男柜員

          1

          3

          9

          4

          3

          1)在答題卡所給的坐標(biāo)系中分別畫出男、女柜員員工的頻率分布直方圖;并求出男、女柜員的月平均不滿意次數(shù)的估計(jì)值,試根據(jù)估計(jì)值比較男、女柜員的滿意度誰高?

          2)在抽取的40名柜員員工中,從不滿意次數(shù)不少于20的柜員員工中隨機(jī)抽取3人,求抽取的3人中,男柜員不少于女柜員的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          )當(dāng)a=3時(shí),求函數(shù)上的最大值和最小值;

          )求函數(shù)的定義域,并求函數(shù)的值域.(用a表示)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某市為了了解民眾對開展創(chuàng)建文明城市工作以來的滿意度,隨機(jī)調(diào)查了40名群眾,并將他們隨機(jī)分成AB兩組,每組20人,A組群眾給第一階段的創(chuàng)文工作評分,B組群眾給第二階段的創(chuàng)文工作評分,根據(jù)兩組群眾的評分繪制了如圖莖葉圖:

          根據(jù)莖葉圖比較群眾對兩個(gè)階段創(chuàng)文工作滿意度評分的平均值及集中程度不要求計(jì)算出具體值,給出結(jié)論即可

          根據(jù)群眾的評分將滿意度從低到高分為三個(gè)等級:

          滿意度評分

          低于70分

          70分到89分

          不低于90分

          滿意度等級

          不滿意

          滿意

          非常滿意

          由頻率估計(jì)概率,判斷該市開展創(chuàng)文工作以來哪個(gè)階段的民眾滿意率高?說明理由.

          完成下面的列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為民眾對兩個(gè)階段創(chuàng)文工作的滿意度存在差異?

          低于70分

          不低于70分

          第一階段

          第二階段

          附:

          k

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】公元前世紀(jì)的畢達(dá)哥拉斯是最早研究完全數(shù)的人.完全數(shù)是一種特殊的自然數(shù),它所有的真因子(即除了自身以外的約數(shù))的和恰好等于它本身.若從集合中隨機(jī)抽取兩個(gè)數(shù),則這兩個(gè)數(shù)中有完全數(shù)的概率是______.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知向量,是坐標(biāo)原點(diǎn),若,且方向是沿的方向繞著點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)角得到的,則稱經(jīng)過一次變換得到,現(xiàn)有向量經(jīng)過一次變換后得到,經(jīng)過一次變換后得到,…,如此下去,經(jīng)過一次變換后得到,設(shè),,,則等于(

          A.B.

          C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為t為參數(shù)),直線過點(diǎn)且傾斜角為,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,取相同的單位長度建立極坐標(biāo)系.

          1)寫出曲線C的極坐標(biāo)方程和直線的參數(shù)方程;

          2)若直線l與曲線C交于兩點(diǎn),求的值.

          查看答案和解析>>

          同步練習(xí)冊答案