日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖是函數(shù),,,)在區(qū)間上的圖象,為了得到這個函數(shù)的圖象,只需將)的圖象上的所有的點(diǎn)(  )

          A. 向左平移個長度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>,縱坐標(biāo)不變

          B. 向左平移個長度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>2倍,縱坐標(biāo)不變

          C. 向左平移個長度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>,縱坐標(biāo)不變

          D. 向左平移個長度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>2倍,縱坐標(biāo)不變

          【答案】A

          【解析】

          由圖可知,,從而可求得,再由可求得,利用函數(shù)的圖象變換即可求得答案.

          解:由圖可知,

          ),

          ),又 ,

          ,

          為了得到這個函數(shù)的圖象,只需將)的圖象上的所有向左平移個長度單位,得到的圖象,再將的圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span> (縱坐標(biāo)不變)即可.

          故選:A

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知雙曲線的漸近線方程為,一個焦點(diǎn)為

          1)求雙曲線的方程;

          2)過雙曲線上的任意一點(diǎn),分別作這兩條漸近線的平行線與這兩條漸近線得到四邊形,證明四邊形的面積是一個定值;

          3)設(shè)直線在第一象限內(nèi)與漸近線所圍成的三角形繞著軸旋轉(zhuǎn)一周所得幾何體的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的方程為,圓軸相切于點(diǎn),與軸正半軸相交于、兩點(diǎn),且,如圖1.

          1)求圓的方程;

          2)如圖1,過點(diǎn)的直線與橢圓相交于兩點(diǎn),求證:射線平分;

          3)如圖2所示,點(diǎn)是橢圓的兩個頂點(diǎn),且第三象限的動點(diǎn)在橢圓上,若直線軸交于點(diǎn),直線軸交于點(diǎn),試問:四邊形的面積是否為定值?若是,請求出這個定值,若不是,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,中點(diǎn),側(cè)棱,底面為直角梯形,其中,,平面,、分別是線段上的動點(diǎn),且.

          1)求證:平面

          2)當(dāng)三棱錐的體積取最大值時,求到平面的距離;

          3)在(2)的條件下求與平面所成角.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (Ⅰ)當(dāng)時,求函數(shù)的極小值;

          (Ⅱ)當(dāng)時,討論的單調(diào)性;

          (Ⅲ)若函數(shù)在區(qū)間上有且只有一個零點(diǎn),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】正方形的邊長為2,,分別為的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,平面平面.

          1)證明:平面

          2)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示多面體,其底面為矩形且,四邊形為平行四邊形,點(diǎn)在底面內(nèi)的投影恰好是的中點(diǎn).

          (1)已知為線段的中點(diǎn),證明:平面;

          (2)若二面角大小為,求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某公司為了解某產(chǎn)品的獲利情況,將今年17月份的銷售收入(單位:萬元)與純利潤(單位:萬元)的數(shù)據(jù)進(jìn)行整理后,得到如下表格:

          月份

          1

          2

          3

          4

          5

          6

          7

          銷售收入

          13

          13.5

          13.8

          14

          14.2

          14.5

          15

          純利潤

          3.2

          3.8

          4

          4.2

          4.5

          5

          5.5

          該公司先從這7組數(shù)據(jù)中選取5組數(shù)據(jù)求純利潤關(guān)于銷售收入的線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn).假設(shè)選取的是2月至6月的數(shù)據(jù).

          1)求純利潤關(guān)于銷售收入的線性回歸方程(精確到0.01);

          2)若由線性回歸方程得到的估計數(shù)據(jù)與檢驗(yàn)數(shù)據(jù)的誤差均不超過0.1萬元,則認(rèn)為得到的線性回歸方程是理想的.試問該公司所得線性回歸方程是否理想?

          參考公式:,,;參考數(shù)據(jù):.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐P-ABCD的底面ABCD為正方形,E,F分別是棱PC,AB的中點(diǎn).

          1)求證:平面PAD

          2)若,求直線EF與平面PAB所成角的正弦值.

          查看答案和解析>>

          同步練習(xí)冊答案