日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓的方程為,圓軸相切于點(diǎn),與軸正半軸相交于、兩點(diǎn),且,如圖1.

          1)求圓的方程;

          2)如圖1,過(guò)點(diǎn)的直線與橢圓相交于、兩點(diǎn),求證:射線平分

          3)如圖2所示,點(diǎn)、是橢圓的兩個(gè)頂點(diǎn),且第三象限的動(dòng)點(diǎn)在橢圓上,若直線軸交于點(diǎn),直線軸交于點(diǎn),試問(wèn):四邊形的面積是否為定值?若是,請(qǐng)求出這個(gè)定值,若不是,請(qǐng)說(shuō)明理由.

          【答案】1;(2)證明見(jiàn)解析;(3)是,.

          【解析】

          1)根據(jù)已知條件設(shè)出圓心坐標(biāo),半徑為圓心縱坐標(biāo),利用弦長(zhǎng)公式,可求出圓的方程;

          2)先求出點(diǎn)坐標(biāo),設(shè)出直線方程,與橢圓方程聯(lián)立,利用韋達(dá)定理,即可求得,命題得證;

          3)設(shè),求出直線、直線方程,進(jìn)而求出點(diǎn)與點(diǎn)的坐標(biāo),然后四邊形的面積用點(diǎn)與點(diǎn)的坐標(biāo)表示,計(jì)算可得定值.

          1)依題意,設(shè)圓心,

          ,解得

          所求的方程為;

          2代入圓方程,得

          若過(guò)點(diǎn)的直線斜率不存在,此時(shí)軸上,

          ,射線平分,

          若過(guò)點(diǎn)的直線斜率存在,設(shè)其方程為

          聯(lián)立,消去,

          設(shè),,

          ,

          ,

          射線平分,

          3)設(shè),

          直線方程為,

          ,即,

          直線方程為,

          ,即,,

          ,

          四邊形的面積為定值.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某高速公路隧道設(shè)計(jì)為單向三車道,每條車道寬4米,要求通行車輛限高5米,隧道全長(zhǎng)1.5千米,隧道的斷面輪廓線近似地看成半個(gè)橢圓形狀(如圖所示).

          1)若最大拱高6米,則隧道設(shè)計(jì)的拱寬至少是多少米?(結(jié)果取整數(shù))

          2)如何設(shè)計(jì)拱高和拱寬,才能使半個(gè)橢圓形隧道的土方工程量最?(結(jié)果取整數(shù))

          參考數(shù)據(jù):,橢圓的面積公式為,其中,分別為橢圓的長(zhǎng)半軸和短半軸長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】正三角形的邊長(zhǎng)為,將它沿高折疊,使點(diǎn)與點(diǎn)間的距離為,則四面體外接球的表面積為( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在三棱錐中,是邊長(zhǎng)為4的正三角形, ,分別為的中點(diǎn),且.

          (1)證明:平面ABC;

          (2)求二面角的余弦值;

          (3)求點(diǎn)到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】[選修4—5:參數(shù)方程選講]

          在直角坐標(biāo)系xoy中,曲線的參數(shù)方程是(t是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是

          (1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

          (2)若兩曲線交點(diǎn)為A、B,求

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某機(jī)器生產(chǎn)商,對(duì)一次性購(gòu)買兩臺(tái)機(jī)器的客戶推出兩種超過(guò)質(zhì)保期后兩年內(nèi)的延保維修方案:

          方案一:交納延保金元,在延保的兩年內(nèi)可免費(fèi)維修次,超過(guò)次每次收取維修費(fèi)元;

          方案二:交納延保金元,在延保的兩年內(nèi)可免費(fèi)維修次,超過(guò)次每次收取維修費(fèi)元.

          某工廠準(zhǔn)備一次性購(gòu)買兩臺(tái)這種機(jī)器,現(xiàn)需決策在購(gòu)買機(jī)器時(shí)應(yīng)購(gòu)買哪種延保方案,為此搜集并整理了臺(tái)這種機(jī)器超過(guò)質(zhì)保期后延保兩年內(nèi)維修的次數(shù),統(tǒng)計(jì)得下表:

          維修次數(shù)

          0

          1

          2

          3

          機(jī)器臺(tái)數(shù)

          20

          10

          40

          30

          以上臺(tái)機(jī)器維修次數(shù)的頻率代替一臺(tái)機(jī)器維修次數(shù)發(fā)生的概率,記表示這兩臺(tái)機(jī)器超過(guò)質(zhì)保期后延保兩年內(nèi)共需維修的次數(shù).

          的分布列;

          以所需延保金與維修費(fèi)用之和的期望值為決策依據(jù),該工廠選擇哪種延保方案更合算?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)

          1當(dāng)時(shí),求不等式的解集;

          2若關(guān)于x的不等式有實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖是函數(shù),,)在區(qū)間上的圖象,為了得到這個(gè)函數(shù)的圖象,只需將)的圖象上的所有的點(diǎn)( 。

          A. 向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的,縱坐標(biāo)不變

          B. 向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,縱坐標(biāo)不變

          C. 向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的,縱坐標(biāo)不變

          D. 向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,縱坐標(biāo)不變

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓的焦距為,點(diǎn)在橢圓上,且的最小值是為坐標(biāo)原點(diǎn)).

          1)求橢圓的標(biāo)準(zhǔn)方程.

          2)已知?jiǎng)又本與圓相切,且與橢圓交于,兩點(diǎn).是否存在實(shí)數(shù),使得?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案