【題目】正三角形的邊長(zhǎng)為
,將它沿高
折疊,使點(diǎn)
與點(diǎn)
間的距離為
,則四面體
外接球的表面積為( )
A. B.
C.
D.
【答案】B
【解析】
四面體的三條側(cè)棱BD⊥AD、DC⊥DA,底面是等腰三角形,它的外接球就是它擴(kuò)展為三棱柱的外接球,求出三棱柱的底面中心連線的中點(diǎn)到頂點(diǎn)的距離,就是球的半徑,然后求球的表面積即可.
根據(jù)題意可知四面體的三條側(cè)棱BD⊥AD、DC⊥DA,底面是等腰三角形,它的外接球就是它擴(kuò)展為三棱柱的外接球,求出三棱柱的底面中心連線的中點(diǎn)到頂點(diǎn)的距離,就是球的半徑,
三棱柱中,底面△BDC,BD=CD=1,BC,∴∠BDC=120°,∴△BDC的外接圓的半徑為
1
由題意可得:球心到底面的距離為,
∴球的半徑為r.
外接球的表面積為:4πr2=7π
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)指令(
,
),機(jī)器人在平面上能完成下列動(dòng)作,先原地旋轉(zhuǎn)弧度
(
為正時(shí),按逆時(shí)針?lè)较蛐D(zhuǎn)
,
為負(fù)時(shí),按順時(shí)針?lè)较蛐D(zhuǎn)
),再朝其面對(duì)的方向沿直線行走距離r;
(1)現(xiàn)機(jī)器人在平面直角坐標(biāo)系的坐標(biāo)原點(diǎn),且面對(duì)x軸正方向,試給機(jī)器人下一個(gè)指令,使其移動(dòng)到點(diǎn);
(2)機(jī)器人在完成該指令后,發(fā)現(xiàn)在點(diǎn)處有一小球,正向坐標(biāo)原點(diǎn)作勻速直線滾動(dòng),已知小球滾動(dòng)的速度為機(jī)器人直線行走速度的2倍,若忽略機(jī)器人原地旋轉(zhuǎn)所需的時(shí)間,問(wèn)機(jī)器人最快可在何處截住小球?并給出機(jī)器人截住小球所需的指令?(結(jié)果用反三角函數(shù)表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(1)若在
上單調(diào)遞增,求
的取值范圍;
(2)若有兩個(gè)極值點(diǎn)
,
,
,證明:(i)
;(ii)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的漸近線方程為
,一個(gè)焦點(diǎn)為
.
(1)求雙曲線的方程;
(2)過(guò)雙曲線上的任意一點(diǎn)
,分別作這兩條漸近線的平行線與這兩條漸近線得到四邊形
,證明四邊形
的面積是一個(gè)定值;
(3)設(shè)直線與
在第一象限內(nèi)與漸近線
所圍成的三角形
繞著
軸旋轉(zhuǎn)一周所得幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為
,
為橢圓的左、右焦點(diǎn),過(guò)右焦點(diǎn)
的直線與橢圓交于
兩點(diǎn),且
的周長(zhǎng)為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)若點(diǎn)A是第一象限內(nèi)橢圓上一點(diǎn),且在軸上的正投影為右焦點(diǎn)
,過(guò)點(diǎn)
作直線
分別交橢圓于
兩點(diǎn),當(dāng)直線
的傾斜角互補(bǔ)時(shí),試問(wèn):直線
的斜率是否為定值;若是,請(qǐng)求出其定值;否則,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩直線方程與
,點(diǎn)
在
上運(yùn)動(dòng),點(diǎn)
在
上運(yùn)動(dòng),且線段
的長(zhǎng)為定值
.
(Ⅰ)求線段的中點(diǎn)
的軌跡方程;
(Ⅱ)設(shè)直線與點(diǎn)
的軌跡相交于
,
兩點(diǎn),
為坐標(biāo)原點(diǎn),若
,求原點(diǎn)
的直線
的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)生為了測(cè)試煤氣灶燒水如何節(jié)省煤氣的問(wèn)題設(shè)計(jì)了一個(gè)實(shí)驗(yàn),并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開一壺水所用時(shí)間
的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點(diǎn)圖(如下圖).
表中,
.
(1)根據(jù)散點(diǎn)圖判斷,與
哪一個(gè)更適宜作燒水時(shí)間
關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)
的回歸方程類型?(不必說(shuō)明理由)
(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于
的回歸方程;
(3)若單位時(shí)間內(nèi)煤氣輸出量與旋轉(zhuǎn)的弧度數(shù)
成正比,那么,利用第(2)問(wèn)求得的回歸方程知
為多少時(shí),燒開一壺水最省煤氣?
附:對(duì)于一組數(shù)據(jù),其回歸直線
的斜率和截距的最小二乘法估計(jì)值分別為
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的方程為
,圓
與
軸相切于點(diǎn)
,與
軸正半軸相交于
、
兩點(diǎn),且
,如圖1.
(1)求圓的方程;
(2)如圖1,過(guò)點(diǎn)的直線
與橢圓
相交于
、
兩點(diǎn),求證:射線
平分
;
(3)如圖2所示,點(diǎn)、
是橢圓
的兩個(gè)頂點(diǎn),且第三象限的動(dòng)點(diǎn)
在橢圓
上,若直線
與
軸交于點(diǎn)
,直線
與
軸交于點(diǎn)
,試問(wèn):四邊形
的面積是否為定值?若是,請(qǐng)求出這個(gè)定值,若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示多面體,其底面
為矩形且
,四邊形
為平行四邊形,點(diǎn)
在底面
內(nèi)的投影恰好是
的中點(diǎn).
(1)已知為線段
的中點(diǎn),證明:
平面
;
(2)若二面角大小為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com