【題目】如圖,在四棱錐中,
為
中點(diǎn),側(cè)棱
,底面
為直角梯形,其中
,
,
平面
,
、
分別是線段
、
上的動點(diǎn),且
.
(1)求證:平面
;
(2)當(dāng)三棱錐的體積取最大值時,求
到平面
的距離;
(3)在(2)的條件下求與平面
所成角.
【答案】(1)證明見解析;(2);(3)
.
【解析】
(1)證明和
即可;
(2)根據(jù)體積最值關(guān)系求出分別為
的中點(diǎn),建立空間直角坐標(biāo)系,求出平面
的法向量,利用公式
求距離;
(3)結(jié)合第(2)問的法向量利用公式即可求出線面角.
(1)在中,
為
中點(diǎn),側(cè)棱
,所以
,
又因?yàn)?/span>平面
,
平面
,所以
,
是平面
內(nèi)兩條相交直線,
所以平面
;
(2),即
,
,所以
是等腰直角三角形,
,
平面
,
平面
,所以
,
連接,
設(shè),則
,由(1)
平面
,
所以是點(diǎn)
到平面
的距離,
所以三棱錐的體積
,
,當(dāng)
時,取得最大值
此時分別為
的中點(diǎn),
,所以四邊形
是平行四邊形,
,
所以四邊形是正方形,
,
以為原點(diǎn),
方向?yàn)?/span>
軸正方向建立空間直角坐標(biāo)系,如圖所示:
則,
,
設(shè)平面的法向量
,則
,
取,則
,
所以點(diǎn)到平面
的距離
;
(3)設(shè)與平面
所成角為
,
,
,
即與平面
所成角為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)絡(luò)營銷部門為了統(tǒng)計(jì)某市網(wǎng)友某日在某淘寶店的網(wǎng)購情況,隨機(jī)抽查了該市當(dāng)天名網(wǎng)友的網(wǎng)購金額情況,得到如下統(tǒng)計(jì)表(如圖).
網(wǎng)購金額(單位:千元) | 頻數(shù) | 頻率 |
3 | 0.05 | |
9 | 0.15 | |
15 | 0.25 | |
18 | 0.30 | |
若網(wǎng)購金額超過千元的顧客定義為“網(wǎng)購達(dá)人”,網(wǎng)購金額不超過
千元的顧客定義為“非網(wǎng)購達(dá)人”,已知“非網(wǎng)購達(dá)人”與“網(wǎng)購達(dá)人”人數(shù)比恰好為
.
(Ⅰ)試確定的值,并補(bǔ)全頻率分布直方圖(如圖);
(Ⅱ)該營銷部門為了進(jìn)一步了解這名網(wǎng)友的購物體驗(yàn),從“非網(wǎng)購達(dá)人”與“網(wǎng)購達(dá)人”中用分層抽樣的方法抽取
人,若需從這
人中隨機(jī)選取
人進(jìn)行問卷調(diào)查.設(shè)
為選取的
人中“網(wǎng)購達(dá)人”的人數(shù),求
的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,
是邊長為4的正三角形,
,
分別為
的中點(diǎn),且
.
(1)證明:平面ABC;
(2)求二面角的余弦值;
(3)求點(diǎn)到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某機(jī)器生產(chǎn)商,對一次性購買兩臺機(jī)器的客戶推出兩種超過質(zhì)保期后兩年內(nèi)的延保維修方案:
方案一:交納延保金元,在延保的兩年內(nèi)可免費(fèi)維修
次,超過
次每次收取維修費(fèi)
元;
方案二:交納延保金元,在延保的兩年內(nèi)可免費(fèi)維修
次,超過
次每次收取維修費(fèi)
元.
某工廠準(zhǔn)備一次性購買兩臺這種機(jī)器,現(xiàn)需決策在購買機(jī)器時應(yīng)購買哪種延保方案,為此搜集并整理了臺這種機(jī)器超過質(zhì)保期后延保兩年內(nèi)維修的次數(shù),統(tǒng)計(jì)得下表:
維修次數(shù) | 0 | 1 | 2 | 3 |
機(jī)器臺數(shù) | 20 | 10 | 40 | 30 |
以上臺機(jī)器維修次數(shù)的頻率代替一臺機(jī)器維修次數(shù)發(fā)生的概率,記
表示這兩臺機(jī)器超過質(zhì)保期后延保兩年內(nèi)共需維修的次數(shù).
求
的分布列;
以所需延保金與維修費(fèi)用之和的期望值為決策依據(jù),該工廠選擇哪種延保方案更合算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
1
當(dāng)
時,求不等式
的解集;
2
若關(guān)于x的不等式
有實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中,邊
,
,令
,
,
,過
邊上一點(diǎn)
(異于端點(diǎn))引邊
的垂線
,垂足為
,再由
引邊
的垂線
,垂足為
,又由
引邊
的垂線
,垂足為
,同樣的操作連續(xù)進(jìn)行,得到點(diǎn)列
、
、
,設(shè)
(
);
(1)求;
(2)結(jié)論“”是否正確?請說明理由;
(3)若對于任意,不等式
恒成立,求
的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是函數(shù)(
,
,
,
)在區(qū)間
上的圖象,為了得到這個函數(shù)的圖象,只需將
(
)的圖象上的所有的點(diǎn)( )
A. 向左平移個長度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>
,縱坐標(biāo)不變
B. 向左平移個長度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>2倍,縱坐標(biāo)不變
C. 向左平移個長度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>
,縱坐標(biāo)不變
D. 向左平移個長度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>2倍,縱坐標(biāo)不變
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某部門經(jīng)統(tǒng)計(jì),客戶對不同款型理財(cái)產(chǎn)品的最滿意程度百分比和對應(yīng)的理財(cái)總銷售量(萬元)如下表(最滿意度百分比超高時總銷售量最高):
產(chǎn)品款型 | A | B | C | D | E | F | G | H | I | J |
最滿意度% | 20 | 34 | 25 | 19 | 26 | 20 | 19 | 24 | 19 | 13 |
總銷量(萬元) | 80 | 89 | 89 | 78 | 75 | 71 | 65 | 62 | 60 | 52 |
設(shè)表示理財(cái)產(chǎn)品最滿意度的百分比,
為該理財(cái)產(chǎn)品的總銷售量(萬元).這些數(shù)據(jù)的散點(diǎn)圖如圖所示.
(1)在份
款型理財(cái)產(chǎn)品的顧客滿意度調(diào)查資料中任取
份;只有一份最滿意的,求含有最滿意客戶資料事件的概率.
(2)我們約定:相關(guān)系數(shù)的絕對值在以下是無線性相關(guān),在
以上(含
)至
是一般線性相關(guān),在
以上(含
)是較強(qiáng)線性相關(guān),若沒有達(dá)到較強(qiáng)線性相關(guān)則采取“末位”剔除制度(即總銷售量最少的那一款產(chǎn)品退出理財(cái)銷售);試求在剔除“末位”款型后的線性回歸方程(系數(shù)精確到
).
數(shù)據(jù)參考計(jì)算值:
項(xiàng)目 |
|
|
|
| ||
值 | 21.9 | 72.1 | 288.9 | 37.16 | 452.1 | 17.00 |
附:回歸直線方程的斜率和截距的最小二乘法估計(jì)分別為:
線性相關(guān)系數(shù)
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com