【題目】為了了解我市參加2018年全國(guó)高中數(shù)學(xué)聯(lián)賽的學(xué)生考試結(jié)果情況,從中選取60名同學(xué)將其成績(jī)(百分制,均為正數(shù))分成六組后,得到部分頻率分布直方圖(如圖),觀察圖形,回答下列問(wèn)題:
(1)求分?jǐn)?shù)在內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)根據(jù)頻率分布直方圖,估計(jì)本次考試成績(jī)的眾數(shù)、均值;
(3)根據(jù)評(píng)獎(jiǎng)規(guī)則,排名靠前10%的同學(xué)可以獲獎(jiǎng),請(qǐng)你估計(jì)獲獎(jiǎng)的同學(xué)至少需要所少分?
【答案】(1)詳見(jiàn)解析(2)眾數(shù)為:75和85,均值為:(3)88分
【解析】
⑴由頻率分布直方圖即可計(jì)算出分?jǐn)?shù)在內(nèi)的頻率
⑵由頻率分布直方圖得到本次考試成績(jī)的眾數(shù),然后計(jì)算平均值
⑶結(jié)合題意計(jì)算出排名靠前10%的分?jǐn)?shù)
(1)設(shè)分?jǐn)?shù)在內(nèi)的頻率為
,根據(jù)頻率分布直方圖,則有
,可得
,
分?jǐn)?shù)在
內(nèi)的頻率為0.25.
所以頻率分布直方圖為:
(2)由圖知,眾數(shù)為:75和85
均值為:.
(3)因?yàn)榉謹(jǐn)?shù)在內(nèi)的頻率為0.25,
內(nèi)的頻率為0.05,
而
所以得分前10%的分界點(diǎn)應(yīng)在80至90之間.
設(shè)所求的分界點(diǎn)為,
則,解得
.
所以得分前10%的分界點(diǎn)為88,即獲獎(jiǎng)的同學(xué)至少需要88分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是同一球面上的四點(diǎn),
是邊長(zhǎng)為6的等邊三角形,若三棱錐
體積的最大值為
,則該球的表面積為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線的極坐標(biāo)方程
.以極點(diǎn)為原點(diǎn),極軸為
軸非負(fù)半軸建立平面直角坐標(biāo)系,且在兩坐標(biāo)系中取相同的長(zhǎng)度單位,直線
的參數(shù)方程為
(
為參數(shù)).
(1)寫(xiě)出曲線的參數(shù)方程和直線
的普通方程;
(2)過(guò)曲線上任意一點(diǎn)
作與直線
相交的直線,該直線與直線
所成的銳角為
,設(shè)交點(diǎn)為
,求
的最大值和最小值,并求出取得最大值和最小值時(shí)點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若數(shù)列同時(shí)滿足:①對(duì)于任意的正整數(shù)
,
恒成立;②對(duì)于給定的正整數(shù)
,
對(duì)于任意的正整數(shù)
恒成立,則稱數(shù)列
是“
數(shù)列”.
(1)已知判斷數(shù)列
是否為“
數(shù)列”,并說(shuō)明理由;
(2)已知數(shù)列是“
數(shù)列”,且存在整數(shù)
,使得
,
,
,
成等差數(shù)列,證明:
是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知函數(shù),其中
,求函數(shù)
的圖象恰好經(jīng)過(guò)第一、二、三象限的概率;
(2)某校早上8:10開(kāi)始上課,假設(shè)該校學(xué)生小張與小王在早上7:30~8:00之間到校,且每人到該時(shí)間段內(nèi)到校時(shí)刻是等可能的,求兩人到校時(shí)刻相差10分鐘以上的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列滿足
點(diǎn)
在直線
上.
(1)求數(shù)列的通項(xiàng)公式;
(2),求數(shù)列
的前n項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線過(guò)點(diǎn)
,圓
,直線
與圓
交于
不同兩點(diǎn).
(Ⅰ)求直線的斜率
的取值范圍;
(Ⅱ)是否存在過(guò)點(diǎn)且垂直平分弦
的直線
?若存在,求直線
斜率
的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:
經(jīng)過(guò)點(diǎn)
(
,
),且兩個(gè)焦點(diǎn)
,
的坐標(biāo)依次為(
1,0)和(1,0).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè),
是橢圓
上的兩個(gè)動(dòng)點(diǎn),
為坐標(biāo)原點(diǎn),直線
的斜率為
,直線
的斜率為
,求當(dāng)
為何值時(shí),直線
與以原點(diǎn)為圓心的定圓相切,并寫(xiě)出此定圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某鎮(zhèn)在政府“精準(zhǔn)扶貧”的政策指引下,充分利用自身資源,大力發(fā)展養(yǎng)殖業(yè),以增加收入,政府計(jì)劃共投入72萬(wàn)元,全部用于甲、乙兩個(gè)合作社,每個(gè)合作社至少要投入15萬(wàn)元,其中甲合作社養(yǎng)魚(yú),乙合作社養(yǎng)雞,在對(duì)市場(chǎng)進(jìn)行調(diào)研分析發(fā)現(xiàn)養(yǎng)魚(yú)的收益M、養(yǎng)雞的收益N與投入a(單位:萬(wàn)元)滿足,N=
a+20.設(shè)甲合作社的投入為x(單位:萬(wàn)元),兩個(gè)合作社的總收益為f(x)(單位:萬(wàn)元).
(1)當(dāng)甲合作社的投入為25萬(wàn)元時(shí),求兩個(gè)合作社的總收益;
(2)試問(wèn)如何安排甲、乙兩個(gè)合作社的投入,才能使總收益最大,最大總收益為多少萬(wàn)元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com