【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線的極坐標(biāo)方程
.以極點為原點,極軸為
軸非負(fù)半軸建立平面直角坐標(biāo)系,且在兩坐標(biāo)系中取相同的長度單位,直線
的參數(shù)方程為
(
為參數(shù)).
(1)寫出曲線的參數(shù)方程和直線
的普通方程;
(2)過曲線上任意一點
作與直線
相交的直線,該直線與直線
所成的銳角為
,設(shè)交點為
,求
的最大值和最小值,并求出取得最大值和最小值時點
的坐標(biāo).
【答案】(1),
(2)點
坐標(biāo)為
時,
,點
的坐標(biāo)為
時,
.
【解析】【試題分析】(1)對曲線的極坐標(biāo)方程兩邊乘以
轉(zhuǎn)化為直角坐標(biāo)方程,配方得到圓心和半徑,然后直接寫出圓的參數(shù)方程.將直線的參數(shù)方程利用加減消元法消去
,可求得直線
的普通方程.(2)設(shè)圓上任意一點到直線的距離為
,則
,由此利用點到直線的距離公式可求得
的最大值和最小值,也即是
的最大值和最小值.
【試題解析】
(1)曲線C的直角坐標(biāo)方程為,
表示圓心為,半徑為
的圓,
化為參數(shù)方程為(
為參數(shù))
直線的普通方程為
.
(2)由題知點到直線
的距離
,
設(shè)點.
則有點到直線
的距離
,
其中,
,
當(dāng),即
時,
,
,
此時,
,
;
當(dāng)即
時,
,
,
此時,
,
.
綜上,點坐標(biāo)為
時,
,點
的坐標(biāo)為
時,
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)是定義在
上的偶函數(shù),當(dāng)
時,
).
(1)當(dāng)時,求
的解析式;
(2)若,試判斷
的上單調(diào)性,并證明你的結(jié)論;
(3)是否存在,使得當(dāng)
時,
有最大值
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機(jī)構(gòu)對本市小學(xué)生課業(yè)負(fù)擔(dān)情況進(jìn)行了調(diào)查,設(shè)平均每人每天做作業(yè)的時間為分鐘,有1200名小學(xué)生參加了此項調(diào)查,調(diào)查所得到的數(shù)據(jù)用程序框圖處理(如圖),若輸出的結(jié)果是840,若用樣本頻率估計概率,則平均每天做作業(yè)的時間在0~60分鐘內(nèi)的學(xué)生的概率是( )
A. 0.32 B. 0.36 C. 0.7 D. 0.84
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解我市參加2018年全國高中數(shù)學(xué)聯(lián)賽的學(xué)生考試結(jié)果情況,從中選取60名同學(xué)將其成績(百分制,均為正數(shù))分成六組后,得到部分頻率分布直方圖(如圖),觀察圖形,回答下列問題:
(1)求分?jǐn)?shù)在內(nèi)的頻率,并補(bǔ)全這個頻率分布直方圖;
(2)根據(jù)頻率分布直方圖,估計本次考試成績的眾數(shù)、均值;
(3)根據(jù)評獎規(guī)則,排名靠前10%的同學(xué)可以獲獎,請你估計獲獎的同學(xué)至少需要所少分?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com