日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)是同一球面上的四點(diǎn),是邊長(zhǎng)為6的等邊三角形,若三棱錐體積的最大值為,則該球的表面積為( )

          A. B. C. D.

          【答案】A

          【解析】

          作出圖形由圖知,當(dāng)點(diǎn)D與球心O以及△ABC外接圓圓心三點(diǎn)共線(xiàn)且D與△ABC外接圓圓心位于球心的異側(cè)時(shí),三棱錐DABC的體積取得最大值,結(jié)合三棱錐的體積求出棱錐的h,然后利用勾股定理求球O的半徑R,最后利用表面積公式可求出答案.

          如圖所示,

          由題意可知,設(shè)點(diǎn)M為△ABC外接圓的圓心,當(dāng)點(diǎn)D、OM三點(diǎn)共線(xiàn)時(shí),且D、M分別位于點(diǎn)O的異側(cè)時(shí),三棱錐DABC的體積取得最大值,

          ABC的面積為,

          由于三棱錐DABC的體積的最大值為,得DM=6,

          易知DM⊥平面ABC,則三棱錐DABC為正三棱錐,△ABC的外接圓直徑為2AM=,∴AM=2,設(shè)球O的半徑為為R,在直角三角形AOM中,

          由勾股定理得,,解得R=4R=6(舍去)

          因此,球O的表面積為

          故選:A

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知橢圓 , 其左右焦點(diǎn)為,過(guò)點(diǎn)的直線(xiàn)交橢圓兩點(diǎn),線(xiàn)段的中點(diǎn)為 的中垂線(xiàn)與軸和軸分別交于兩點(diǎn),且、構(gòu)成等差數(shù)列.

          (1)求橢圓的方程;

          (2)記的面積為 為原點(diǎn)的面積為,試問(wèn):是否存在直線(xiàn),使得說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù),,其中,設(shè)

          (1)判斷的奇偶性,并說(shuō)明理由;

          (2),求使成立的x的集合

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知二次函數(shù)對(duì)一切實(shí)數(shù),都有成立,且,.

          1)求的解析式;

          2)記函數(shù)上的最大值為,最小值為,若,當(dāng)時(shí),求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知四棱錐中, 平面,底面為菱形, , 中點(diǎn), 的中點(diǎn), 上的點(diǎn).

          (Ⅰ)求證:平面平面;

          (Ⅱ)當(dāng)中點(diǎn),且時(shí),求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知四棱錐的底面是梯形,,,,,在棱上且.

          (1)證明:平面;

          (2)若平面,異面直線(xiàn)所成角的余弦值為,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知.

          (Ⅰ)若,求的單調(diào)增區(qū)間;

          (Ⅱ)當(dāng)時(shí),不等式恒成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在五面體中, , , , ,平面平面..

          (1)證明:直線(xiàn)平面;

          (2)已知為棱上的點(diǎn),試確定點(diǎn)位置,使二面角的大小為.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為了了解我市參加2018年全國(guó)高中數(shù)學(xué)聯(lián)賽的學(xué)生考試結(jié)果情況,從中選取60名同學(xué)將其成績(jī)(百分制,均為正數(shù))分成六組后,得到部分頻率分布直方圖(如圖),觀(guān)察圖形,回答下列問(wèn)題:

          (1)求分?jǐn)?shù)在內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;

          (2)根據(jù)頻率分布直方圖,估計(jì)本次考試成績(jī)的眾數(shù)、均值;

          (3)根據(jù)評(píng)獎(jiǎng)規(guī)則,排名靠前10%的同學(xué)可以獲獎(jiǎng),請(qǐng)你估計(jì)獲獎(jiǎng)的同學(xué)至少需要所少分?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案