【題目】設(shè)是同一球面上的四點(diǎn),
是邊長(zhǎng)為6的等邊三角形,若三棱錐
體積的最大值為
,則該球的表面積為( )
A. B.
C.
D.
【答案】A
【解析】
作出圖形由圖知,當(dāng)點(diǎn)D與球心O以及△ABC外接圓圓心三點(diǎn)共線(xiàn)且D與△ABC外接圓圓心位于球心的異側(cè)時(shí),三棱錐D﹣ABC的體積取得最大值,結(jié)合三棱錐的體積求出棱錐的h,然后利用勾股定理求球O的半徑R,最后利用表面積公式可求出答案.
如圖所示,
由題意可知,設(shè)點(diǎn)M為△ABC外接圓的圓心,當(dāng)點(diǎn)D、O、M三點(diǎn)共線(xiàn)時(shí),且D、M分別位于點(diǎn)O的異側(cè)時(shí),三棱錐D﹣ABC的體積取得最大值,
△ABC的面積為,
由于三棱錐D﹣ABC的體積的最大值為,得DM=6,
易知DM⊥平面ABC,則三棱錐D﹣ABC為正三棱錐,△ABC的外接圓直徑為2AM=,∴AM=2
,設(shè)球O的半徑為為R,在直角三角形AOM中,
由勾股定理得,即
,解得R=4或R=6(舍去)
因此,球O的表面積為.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓:
, 其左右焦點(diǎn)為
及
,過(guò)點(diǎn)
的直線(xiàn)交橢圓
于
兩點(diǎn),線(xiàn)段
的中點(diǎn)為
,
的中垂線(xiàn)與
軸和
軸分別交于
兩點(diǎn),且
、
、
構(gòu)成等差數(shù)列.
(1)求橢圓的方程;
(2)記的面積為
,
(
為原點(diǎn))的面積為
,試問(wèn):是否存在直線(xiàn)
,使得
?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
,其中
,設(shè)
.
(1)判斷的奇偶性,并說(shuō)明理由;
(2)若,求使
成立的x的集合
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)對(duì)一切實(shí)數(shù)
,都有
成立,且
,
,
.
(1)求的解析式;
(2)記函數(shù)在
上的最大值為
,最小值為
,若
,當(dāng)
時(shí),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐中,
平面
,底面
為菱形,
,
是
中點(diǎn),
是
的中點(diǎn),
是
上的點(diǎn).
(Ⅰ)求證:平面平面
;
(Ⅱ)當(dāng)是
中點(diǎn),且
時(shí),求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐的底面
是梯形,
,
,
,
,
在棱
上且
.
(1)證明:平面
;
(2)若平面
,異面直線(xiàn)
與
所成角的余弦值為
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(Ⅰ)若,求
的單調(diào)增區(qū)間;
(Ⅱ)當(dāng)時(shí),不等式
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在五面體中,
,
,
,
,平面
平面
..
(1)證明:直線(xiàn)平面
;
(2)已知為棱
上的點(diǎn),試確定
點(diǎn)位置,使二面角
的大小為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解我市參加2018年全國(guó)高中數(shù)學(xué)聯(lián)賽的學(xué)生考試結(jié)果情況,從中選取60名同學(xué)將其成績(jī)(百分制,均為正數(shù))分成六組后,得到部分頻率分布直方圖(如圖),觀(guān)察圖形,回答下列問(wèn)題:
(1)求分?jǐn)?shù)在內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)根據(jù)頻率分布直方圖,估計(jì)本次考試成績(jī)的眾數(shù)、均值;
(3)根據(jù)評(píng)獎(jiǎng)規(guī)則,排名靠前10%的同學(xué)可以獲獎(jiǎng),請(qǐng)你估計(jì)獲獎(jiǎng)的同學(xué)至少需要所少分?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com