日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ< )的圖象與x軸相鄰兩個交點間的距離為 ,且圖象上一個最低點為M( ,﹣2). (Ⅰ)求f(x)的解析式;
          (Ⅱ)求f(x)的單調遞增區(qū)間;
          (Ⅲ)當x∈[ ]時,求f(x)的值域.

          【答案】解:(Ⅰ)由圖象與x軸相鄰兩個交點間的距離為 = = ,∴ω=2,

          再根據(jù)圖象上一個最低點為M( ,﹣2),可得A=2,2× +φ= ,φ= ,

          ∴f(x)=2sin(2x+ ).

          (Ⅱ)令2kπ﹣ ≤2x+ ≤2kπ+ ,求得kπ﹣ ≤x≤kπ+ ,k∈Z;

          (Ⅲ)當x∈[ , ]時, ≤2x+ ,∴sin(2x+ )∈[﹣1,2],故函數(shù)的值域為[﹣1,2]


          【解析】(Ⅰ)由周期求得ω,由最低點的坐標結合五點法作圖求得A及φ的值,可得函數(shù)f(x)的解析式.(Ⅱ)由條件利用正弦函數(shù)的單調性,求得f(x)的單調遞增區(qū)間.(Ⅲ)當x∈[ , ],利用正弦函數(shù)的定義域和值域,求得f(x)的值域.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖是某工廠對一批新產品長度(單位:mm)檢測結果的頻率分布直方圖.估計這批產品的中位數(shù)為(

          A.20
          B.25
          C.22.5
          D.22.75

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】(1)若cos = π<x< π,求 的值. 【答案】解:由 π<x< π,得 π<x+ <2π,
          又cos = ,∴sin =﹣
          ∴cosx=cos =cos cos +sin sin =﹣ ,
          從而sinx=﹣ ,tanx=7;
          故原式= ;
          (1)已知函數(shù)f(x)=2 sinxcosx+2cos2x﹣1(x∈R),若f(x0)= ,x0∈[ ],求cos2x0的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】近幾年,由于環(huán)境的污染,霧霾越來越嚴重,某環(huán)保公司銷售一種PM2.5顆粒物防護口罩深受市民歡迎.已知這種口罩的進價為40元,經銷過程中測出年銷售量y(萬件)與銷售單價x(元)存在如圖所示的一次函數(shù)關系,每年銷售這種口罩的總開支z(萬元)(不含進價)與年銷量y(萬件)存在函數(shù)關系z=10y+42.5.
          (I)求y關于x的函數(shù)關系;
          (II)寫出該公司銷售這種口罩年獲利W(萬元)關于銷售單價x(元)的函數(shù)關系式
          (年獲利=年銷售總金額﹣年銷售口罩的總進價﹣年總開支金額);當銷售單價x為何值時,年獲利最大?最大獲利是多少?
          (III)若公司希望該口罩一年的銷售獲利不低于57.5萬元,則該公司這種口罩的銷售單價應定在什么范圍?在此條件下要使口罩的銷售量最大,你認為銷售單價應定為多少元?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】若直線y=x+b與曲線 有公共點,則b的取值范圍是(
          A.[ , ]
          B.[ ,3]
          C.[﹣1, ]
          D.[ ,3]

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在平面直角坐標系中,O為坐標原點,A,B,C三點滿足 = + . (Ⅰ)求證:A,B,C三點共線;
          (Ⅱ)已知A(1,cosx),B(1+sinx,cosx),x∈[0, ],f(x)= ﹣(2m2+ )| |的最小值為 ,求實數(shù)m的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在三棱錐S﹣ABC中,△ABC是邊長為4的正三角形,平面SAC⊥平面ABC,SA=SC=2 ,M為AB的中點.

          (1)求證:AC⊥SB;
          (2)求二面角S﹣CM﹣A的平面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,四棱錐P﹣ABCD中,所有棱長均為2,O是底面正方形ABCD中心,E為PC中點,則直線OE與直線PD所成角為(
          A.30°
          B.60°
          C.45°
          D.90°

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】函數(shù)f(x)(x∈R)滿足f(4)=2, ,則不等式 的解集為

          查看答案和解析>>

          同步練習冊答案