日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】(1)若cos = , π<x< π,求 的值. 【答案】解:由 π<x< π,得 π<x+ <2π,
          又cos = ,∴sin =﹣
          ∴cosx=cos =cos cos +sin sin =﹣ ,
          從而sinx=﹣ ,tanx=7;
          故原式=
          (1)已知函數(shù)f(x)=2 sinxcosx+2cos2x﹣1(x∈R),若f(x0)= ,x0∈[ , ],求cos2x0的值.

          【答案】
          (1)解:f(x)=2 sinxcosx+2cos2x﹣1

          = sin2x+cos2x

          =2sin(2x+ ),

          當f(x0)= 時,

          sin(2x0+ )= ,

          又x0∈[ ],∴2x0+ ∈[ ],

          ∴cos(2x0+ )=﹣ ,

          ∴cos2x0=cos[(2x0+ )﹣ ]=﹣ × + × =


          【解析】(1)根據(jù)同角的三角函數(shù)關系,轉化法求出cosx、sinx和tanx的值,再計算所求的算式;(2)利用三角恒等變換化簡f(x),根據(jù)f(x0)= 求出sin(2x0+ )和cos(2x0+ )的值,再計算cos2x0的值.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在長方體ABCD﹣A1B1C1D1中,AA1=1,AB=AD=2,E,F(xiàn)分別是棱AB,BC的中點.證明A1 , C1 , F,E四點共面,并求直線CD1與平面A1C1FE所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知點P是圓F1:(x+1)2+y2=16上任意一點(F1是圓心),點F2與點F1關于原點對稱.線段PF2的中垂線m分別與PF1、PF2交于M、N兩點.
          (1)求點M的軌跡C的方程;
          (2)直線l經(jīng)過F2 , 與拋物線y2=4x交于A1 , A2兩點,與C交于B1 , B2兩點.當以B1B2為直徑的圓經(jīng)過F1時,求|A1A2|.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】曲線C上的動點M到定點F(1,0)的距離和它到定直線x=3的距離之比是1:
          (1)求曲線C的方程;
          (2)過點F(1,0)的直線l與C交于A,B兩點,當△ABO面積為 時,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】一個勻速旋轉的摩天輪每12分鐘轉一周,最低點距地面2米,最高點距地面18米,P是摩天輪輪周上一定點,從P在最低點時開始計時,則14分鐘后P點距地面的高度是米.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】函數(shù)f(x)=log2x﹣3sin( x)零點的個數(shù)是(
          A.2
          B.3
          C.4
          D.5

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知雙曲線C: =1,點M與曲線C的焦點不重合,若點M關于曲線C的兩個焦點的對稱點分別為A,B,M,N是坐標平面內的兩點,且線段MN的中點P恰好在雙曲線C上,則|AN﹣BN|=

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ< )的圖象與x軸相鄰兩個交點間的距離為 ,且圖象上一個最低點為M( ,﹣2). (Ⅰ)求f(x)的解析式;
          (Ⅱ)求f(x)的單調遞增區(qū)間;
          (Ⅲ)當x∈[ , ]時,求f(x)的值域.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設銳角三角形ABC的內角A,B,C的對邊分別為a,b,c,
          (1)求A的大小;
          (2)若 ,求a.

          查看答案和解析>>

          同步練習冊答案