【題目】《九章算術(shù)》中,將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱(chēng)之為陽(yáng)馬,將四個(gè)面都為直角三角形的四面體稱(chēng)之為鱉臑.
如圖,在陽(yáng)馬中,側(cè)棱
底面
,且
,過(guò)棱
的中點(diǎn)
,作
交
于點(diǎn)
,連接
(Ⅰ)證明:.試判斷四面體
是否為鱉臑,若是,寫(xiě)出其每個(gè)面的直角(只需寫(xiě)
出結(jié)論);若不是,說(shuō)明理由;
(Ⅱ)若面與面
所成二面角的大小為
,求
的值.
【答案】(Ⅰ)詳見(jiàn)解析;(Ⅱ).
【解析】
(解法1)(Ⅰ)因?yàn)?/span>底面
,所以
,
由底面為長(zhǎng)方形,有
,而
,
所以.而
,所以
.
又因?yàn)?/span>,點(diǎn)
是
的中點(diǎn),所以
.
而,所以
平面
.而
,所以
.
又,
,所以
平面
.
由平面
,
平面
,可知四面體
的四個(gè)面都是直角三角形,
即四面體是一個(gè)鱉臑,其四個(gè)面的直角分別為
.
(Ⅱ)如圖1,在面內(nèi),延長(zhǎng)
與
交于點(diǎn)
,則
是平面
與平面
的交線(xiàn).由(Ⅰ)知,,所以
.
又因?yàn)?/span>底面
,所以
.而
,所以
.
故是面
與面
所成二面角的平面角,
設(shè),
,有
,
在Rt△PDB中, 由, 得
,
則, 解得
.
所以
故當(dāng)面與面
所成二面角的大小為
時(shí),
.
(解法2)
(Ⅰ)如圖2,以為原點(diǎn),射線(xiàn)
分別為
軸的正半軸,建立空間直角坐標(biāo)系.
設(shè),
,則
,
,點(diǎn)
是
的中點(diǎn),
所以,
,
于是,即
.
又已知,而
,所以
.
因,
, 則
, 所以
.
由平面
,
平面
,可知四面體
的四個(gè)面都是直角三角形,
即四面體是一個(gè)鱉臑,其四個(gè)面的直角分別為
.
(Ⅱ)由,所以
是平面
的一個(gè)法向量;
由(Ⅰ)知,,所以
是平面
的一個(gè)法向量.
若面與面
所成二面角的大小為
,
則,
解得.所以
故當(dāng)面與面
所成二面角的大小為
時(shí),
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若x4(x+4)8=a0+a1(x+3)+a2(x+3)2+…+a12(x+3)12,則log2(a1+a3+…+a11)=( ).
A. 4B. 8C. 12D. 11
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱錐A﹣BCD中,BCD是邊長(zhǎng)為的等邊三角形,
,二面角A﹣BC﹣D的大小為θ,且
,則三棱錐A﹣BCD體積的最大值為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率是40%.現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定l,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了如下10組隨機(jī)數(shù):907 966 191 925 271 431 932 458 569 683.
據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率為
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在ABC中,a、b是方程x2-2
x+2=0的兩根,且2cos(A+B)=-1.
(1)求角C的度數(shù);
(2)求c;
(3)求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為創(chuàng)建全國(guó)文明城市,我市積極打造“綠城”的創(chuàng)建目標(biāo),使城市環(huán)境綠韻縈繞,使市民生活綠意盎然.有效增加城區(qū)綠化面積,提高城區(qū)綠化覆蓋率,提升城市形象品位.林業(yè)部門(mén)推廣種植甲、乙兩種樹(shù)苗,并對(duì)甲、乙兩種樹(shù)苗各抽測(cè)了10株樹(shù)苗的高度(單位:厘米),數(shù)據(jù)如下面的莖葉圖:
(1)根據(jù)莖葉圖求甲、乙兩種樹(shù)苗的平均高度;
(2)根據(jù)莖葉圖,計(jì)算甲、乙兩種樹(shù)苗的高度的方差,運(yùn)用統(tǒng)計(jì)學(xué)知識(shí)分析比較甲、乙兩種樹(shù)苗高度整齊情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】記Sn為等比數(shù)列的前n項(xiàng)和,已知S2=2,S3=-6.
(1)求的通項(xiàng)公式;
(2)求Sn,并判斷Sn+1,Sn,Sn+2是否成等差數(shù)列。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:
的一個(gè)焦點(diǎn)為
,點(diǎn)
在橢圓
上.
(Ⅰ)求橢圓的方程與離心率;
(Ⅱ)設(shè)橢圓上不與
點(diǎn)重合的兩點(diǎn)
,
關(guān)于原點(diǎn)
對(duì)稱(chēng),直線(xiàn)
,
分別交
軸于
,
兩點(diǎn).求證:以
為直徑的圓被
軸截得的弦長(zhǎng)是定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com