日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,滿足(2b﹣c)cosA=acosC.
          (1)求角A;
          (2)若 ,b+c=5,求△ABC的面積.

          【答案】
          (1)解:在三角形ABC中,∵(2b﹣c)cosA=acosC,

          由正弦定理得:(2sinB﹣sinC)cosA=sinAcosC,

          化為:2sinBcosA=sinCcosA+sinAcosC=sin(A+C)=sinB,

          sinB≠0,解得cosA= .A∈(0,π).

          ∴A=


          (2)解:由余弦定理得a2=b2+c2﹣2bccosA,

          ∵a= ,b+c=5,

          ∴13=(b+c)2﹣3cb=52﹣3bc,

          化為bc=4,

          所以三角形ABC的面積S= bcsinA= ×4× =


          【解析】(1)由正弦定理進(jìn)行邊角互化,可得到(2sinB﹣sinC)cosA=sinAcosC,進(jìn)行化簡(jiǎn)整理結(jié)合兩角和的正弦公式可得2sinBcosA=sin(A+C)=sinB,不難得出cosA的值,進(jìn)而得到A的角度,(2)根據(jù)余弦定理可得出bc=4,結(jié)合(1)中A的角度可得三角形的面積.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和為Sn , 且滿足(n+1)an=2Sn(n∈N*).
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)設(shè)bn=ancos(πan),求數(shù)列{bn)的前n項(xiàng)和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且an是2與Sn的等差中項(xiàng).
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)若 ,求數(shù)列{bn}的前n項(xiàng)和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在△ABC中,內(nèi)角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,若c(acosB﹣ b)=a2﹣b2
          (1)求角A;
          (2)若a= ,求c﹣b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點(diǎn)p(x,y)是直線kx+y+4=0(k>0)上一動(dòng)點(diǎn),PA、PB是圓C:x2+y2﹣2y=0的兩條切線,A、B是切點(diǎn),若四邊形PACB的最小面積是2,則k的值為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】記定義在R上的函數(shù)y=f(x)的導(dǎo)函數(shù)為f′(x).如果存在x0∈[a,b],使得f(b)﹣f(a)=f′(x0)(b﹣a)成立,則稱x0為函數(shù)f(x)在區(qū)間[a,b]上的“中值點(diǎn)”.那么函數(shù)f(x)=x3﹣3x在區(qū)間[﹣2,2]上的“中值點(diǎn)”為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) ,對(duì)a∈R,b∈(0,+∞),使得f(a)=g(b),則b﹣a的最小值為(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在正三棱柱ABC﹣A1B1C1中,點(diǎn)D是BC的中點(diǎn).

          (1)求證:A1C∥平面AB1D;
          (2)設(shè)M為棱CC1的點(diǎn),且滿足BM⊥B1D,求證:平面AB1D⊥平面ABM.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知f(x)=(logmx)2+2logmx﹣3(m>0,且m≠1).
          (Ⅰ)當(dāng)m=2時(shí),解不等式f(x)<0;
          (Ⅱ)f(x)<0在[2,4]恒成立,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案