日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,在正方形中,的中點,點在線段上,且.若將, 分別沿折起,使兩點重合于點,如圖2.

          (1)求證: 平面;

          (2)求直線與平面所成角的正弦值

          【答案】(1)見解析;(2)

          【解析】分析:第一問首先要分析清在翻折的時候哪些量是不變的,哪些量是變化的,之后借助于勾股定理證得,再利用題的條件,證得相關(guān)的垂直關(guān)系,之后借助于線面垂直的判定定理證得結(jié)果;第二問建立空間直角坐標系,利用空間向量求得線面角的正弦值.

          詳解:(1)證明:設(shè)正方形的邊長為4,由圖1知,,

          , ,

          ,,即

          由題意知,在圖2中,,,平面,平面,且,平面,平面,.

          平面,平面,且,平面

          (2)解:由(1)知平面,則建立如圖所示空間直角坐標系,過點,垂足為,在中,, ,從而

          ,,,

          ,,.

          設(shè)平面的一個法向量為,則,

          ,則,,.設(shè)直線與平面所成角為,

          , .直線與平面所成角的正弦值為

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】現(xiàn)有某高新技術(shù)企業(yè)年研發(fā)費用投入(百萬元)與企業(yè)年利潤(百萬元)之間具有線性相關(guān)關(guān)系,近5年的年研發(fā)費用和年利潤的具體數(shù)據(jù)如表:

          年研發(fā)費用(百萬元)

          年利潤 (百萬元)

          數(shù)據(jù)表明之間有較強的線性關(guān)系.

          (1)求的回歸直線方程;

          (2)如果該企業(yè)某年研發(fā)費用投入8百萬元,預(yù)測該企業(yè)獲得年利潤為多少?

          參考數(shù)據(jù):回歸直線的系數(shù)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù),

          1)當時,求的最大值和最小值;

          2)求實數(shù)的取值范圍,使在區(qū)間上是單調(diào)函數(shù).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù).

          (1)若在定義域上不單調(diào),求的取值范圍;

          (2)設(shè)分別是的極大值和極小值,且,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù).

          (1)若在定義域上不單調(diào),求的取值范圍;

          (2)設(shè),,分別是的極大值和極小值,且,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù),曲線在點處的切線方程為

          (1) 求的值;

          (2) 證明: .

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設(shè)函數(shù)

          1)當時,求證:;

          2)當時,恒成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)

          (1)討論函數(shù)的單調(diào)性;

          (2)是否存在,使得對任意恒成立?若存在,求出的最小值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)

          (Ⅰ)求函數(shù)的單調(diào)區(qū)間;

          (Ⅱ)若,不等式恒成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          同步練習冊答案