【題目】若函數(shù),
(1)若函數(shù)為奇函數(shù),求m的值;
(2)若函數(shù)在
上是增函數(shù),求實數(shù)m的取值范圍;
(3)若函數(shù)在
上的最小值為
,求實數(shù)m的值.
【答案】(1)
(2)
(3)或
【解析】
(1)由奇函數(shù)得到,代入計算得到答案.
(2)討論,
,
三種情況,分別計算得到答案.
(3)根據(jù)(2)的討論,分別計算函數(shù)的最小值,對比范圍得到答案.
(1)是奇函數(shù),定義域為
,令
,得
,
經(jīng)檢驗:時
,
.
(2)①時,
開口向上,對稱軸為
,
在
上單調(diào)遞增
②時,
開口向下,對稱軸為
,
在
上單調(diào)遞增,在
上單調(diào)遞減,
在
上單調(diào)遞增,
,
.
③時,
函數(shù)在
和
上單調(diào)遞增,則
上單調(diào)遞減,
在
上不單調(diào),不滿足題意.
綜上所述:的取值范圍是
.
(3)由(2)可知
①時,
,
在
上單調(diào)遞增,
解得
或
②時,
,
在
上單調(diào)遞增,在
上單調(diào)遞減,
當即
時,
解得:(舍)
當即
時,
解得:,
,
③時,
函數(shù)在
和
上單調(diào)遞增,則
上單調(diào)遞減,
當
時,
解得:(舍)
綜上所述:或
.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,B1,B2是橢圓的短軸端點,P是橢圓上異于點B1,B2的一動點.當直線PB1的方程為
時,線段PB1的長為
.
(1)求橢圓的標準方程;
(2)設點Q滿足:QB1⊥PB1,QB2⊥PB2,求證:△PB1B2與△QB1B2的面積之比為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】三國時期著名的數(shù)學家劉徽對推導特殊數(shù)列的求和公式很感興趣,創(chuàng)造并發(fā)展了許多算法,展現(xiàn)了聰明才智.他在《九章算術》“盈不足”章的第19題的注文中給出了一個特殊數(shù)列的求和公式.這個題的大意是:一匹良馬和一匹駑馬由長安出發(fā)至齊地,長安與齊地相距3000里(1里=500米),良馬第一天走193里,以后每天比前一天多走13里.駑馬第一天走97里,以后每天比前一天少走半里.良馬先到齊地后,馬上返回長安迎駑馬,問兩匹馬在第幾天相遇( )
A. 14天B. 15天C. 16天D. 17天
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】四棱錐中,底面
是邊長為
的菱形,側(cè)面
底面
,
60°,
,
是
中點,點
在側(cè)棱
上.
(Ⅰ)求證: ;
(Ⅱ)是否存在,使平面
平面
?若存在,求出,若不存在,說明理由.
(Ⅲ)是否存在,使
平面
?若存在,求出.若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】新冠肺炎疫情期間,為了減少外出聚集,“線上買菜”受追捧.某電商平臺在地區(qū)隨機抽取了
位居民進行調(diào)研,獲得了他們每個人近七天“線上買菜”消費總金額(單位:元),整理得到如圖所示頻率分布直方圖.
(1)求的值;
(2)從“線上買菜”消費總金額不低于元的被調(diào)研居民中,隨機抽取
位給予獎品,求這
位“線上買菜”消費總金額均低于
元的概率;
(3)若地區(qū)有
萬居民,該平臺為了促進消費,擬對消費總金額不到平均水平一半的居民投放每人
元的電子補貼.假設每組中的數(shù)據(jù)用該組區(qū)間的中點值代替,試根據(jù)上述頻率分布直方圖,估計該平臺在
地區(qū)擬投放的電子補貼總金額.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計如表:
(1)根據(jù)表中數(shù)據(jù),建立關于
的線性回歸方程
;
(2)根據(jù)線性回歸方程預測2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.
附:對于一組數(shù)據(jù),其回歸直線
的斜率和截距的最小二乘估計分別為:
,
.(參考數(shù)據(jù):
,計算結(jié)果保留小數(shù)點后兩位)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】點是函數(shù)
的圖象的一個對稱中心,且點
到該圖象的對稱軸的距離的最小值為
.
①的最小正周期是
;
②的值域為
;
③的初相
為
;
④在
上單調(diào)遞增.
以上說法正確的個數(shù)是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知三棱錐O﹣ABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=1,OB=OC=2,E是OC的中點.
(1)求異面直線BE與AC所成角的余弦值;
(2)求直線BE和平面ABC的所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以下命題為假命題的是( )
A. “若m>0,則方程x2+x-m=0有實數(shù)根”的逆命題
B. “面積相等的三角形全等”的否命題
C. “若xy=1,則x,y互為倒數(shù)”的逆命題
D. “若A∪B=B,則AB”的逆否命題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com