日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知雙曲線與橢圓有相同的焦點(diǎn),點(diǎn)、分別是橢圓的右、右頂點(diǎn),若橢圓經(jīng)過點(diǎn)
          (1)求橢圓的方程;
          (2)已知是橢圓的右焦點(diǎn),以為直徑的圓記為,過點(diǎn)引圓的切線,求此切線的方程;
          (3)設(shè)為直線上的點(diǎn),是圓上的任意一點(diǎn),是否存在定點(diǎn),使得?若存在,求出定點(diǎn)的坐標(biāo);若不存在,說明理由.

          (Ⅰ).(Ⅱ).(Ⅲ)存在定點(diǎn)

          解析試題分析:(Ⅰ)依題意,
          所以橢圓的方程為,
          代入D點(diǎn)坐標(biāo),解得,由此得,
          所以橢圓的方程為.                     (4分)
          (Ⅱ)由(Ⅰ)知,故圓的方程為
          則由知,點(diǎn)在圓上,
          因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/55/e/lwasx.png" style="vertical-align:middle;" />,所以切線的斜率為,
          故所求切線的方程為
          .                           (8分)
          (Ⅲ)設(shè),假設(shè)存在點(diǎn)滿足題意,
          ,
          點(diǎn)在圓C上,
          化簡得,
          因?yàn)樵撌綄θ我獾?img src="http://thumb.zyjl.cn/pic5/tikupic/7e/0/d7do71.png" style="vertical-align:middle;" />恒成立,則解得
          故存在定點(diǎn)對于直線上的點(diǎn)及圓上的任意一點(diǎn)使得成立.                           (12分)
          考點(diǎn):本題考查了橢圓方程及直線與圓的位置關(guān)系
          點(diǎn)評:從近幾年課標(biāo)地區(qū)的高考命題來看,解析幾何綜合題主要考查直線和圓錐曲線的位置關(guān)系以及范圍、最值、定點(diǎn)、定值、存在性等問題,直線與多種曲線的位置關(guān)系的綜合問題將會(huì)逐步成為今后命題的熱點(diǎn),尤其是把直線和圓的位置關(guān)系同本部分知識(shí)的結(jié)合,將逐步成為今后命題的一種趨勢.近幾年高考題中經(jīng)常出現(xiàn)了以函數(shù)、平面向量、導(dǎo)數(shù)、數(shù)列、不等式、平面幾何、數(shù)學(xué)思想方法等知識(shí)為背景,綜合考查運(yùn)用圓錐曲線的有關(guān)知識(shí)分析問題、解決問題的能力,試題風(fēng)格每年都有所創(chuàng)新,但總體穩(wěn)定.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          平面內(nèi)動(dòng)點(diǎn)到定點(diǎn)的距離比它到軸的距離大。
          (1)求動(dòng)點(diǎn)的軌跡的方程;
          (2)過的直線相交于兩點(diǎn),若,求弦的長。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知平面內(nèi)一動(dòng)點(diǎn)到點(diǎn)的距離與點(diǎn)軸的距離的差等于1.(I)求動(dòng)點(diǎn)的軌跡的方程;(II)過點(diǎn)作兩條斜率存在且互相垂直的直線,設(shè)與軌跡相交于點(diǎn),與軌跡相交于點(diǎn),求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題


          已知橢圓:的一個(gè)焦點(diǎn)為且過點(diǎn).

          (Ⅰ)求橢圓E的方程;
          (Ⅱ)設(shè)橢圓E的上下頂點(diǎn)分別為A1A2,P是橢圓上異于A1,A2的任一點(diǎn),直線PA1,PA2分別交軸于點(diǎn)N,M,若直線OT與過點(diǎn)M,N的圓G相切,切點(diǎn)為T
          證明:線段OT的長為定值,并求出該定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓()過點(diǎn),其左、右焦點(diǎn)分別為,且.
          (1)求橢圓的方程;
          (2)若是直線上的兩個(gè)動(dòng)點(diǎn),且,則以為直徑的圓是否過定點(diǎn)?請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓,左、右兩個(gè)焦點(diǎn)分別為、,上頂點(diǎn),為正三角形且周長為6.
          (1)求橢圓的標(biāo)準(zhǔn)方程及離心率;
          (2)為坐標(biāo)原點(diǎn),是直線上的一個(gè)動(dòng)點(diǎn),求的最小值,并求出此時(shí)點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在平面直角坐標(biāo)系中,點(diǎn)到兩點(diǎn),的距離之和等于4,設(shè)點(diǎn)的軌跡為
          (Ⅰ)寫出的方程;
          (Ⅱ)設(shè)直線交于兩點(diǎn).k為何值時(shí)?此時(shí)的值是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,離心率為 , 在軸負(fù)半軸上有一點(diǎn),且

          (1)若過三點(diǎn)的圓 恰好與直線相切,求橢圓C的方程;
          (2)在(1)的條件下,過右焦點(diǎn)作斜率為的直線與橢圓C交于兩點(diǎn),在軸上是否存在點(diǎn),使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍;如果不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,設(shè)拋物線)的準(zhǔn)線與軸交于,焦點(diǎn)為;以、為焦點(diǎn),離心率的橢圓與拋物線軸上方的一個(gè)交點(diǎn)為.

          (1)當(dāng)時(shí),求橢圓的方程;
          (2)在(1)的條件下,直線經(jīng)過橢圓的右焦點(diǎn),與拋物線交于、,如果以線段為直徑作圓,試判斷點(diǎn)與圓的位置關(guān)系,并說明理由;
          (3)是否存在實(shí)數(shù),使得的邊長是連續(xù)的自然數(shù),若存在,求出這樣的實(shí)數(shù);若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案