日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在閉區(qū)間[a,b]D,使得函數(shù)f(x)滿足:
          ①f(x)在[a,b]上是單調(diào)函數(shù);
          ②f(x)在[a,b]上的值域是[2a,2b],則稱區(qū)間[a,b]是函數(shù)f(x)的“和諧區(qū)間”.
          下列結(jié)論錯誤的是(
          A.函數(shù)f(x)=x2(x≥0)存在“和諧區(qū)間”
          B.函數(shù)f(x)=2x(x∈R)存在“和諧區(qū)間”
          C.函數(shù)f(x)= (x>0)不存在“和諧區(qū)間”
          D.函數(shù)f(x)=log2x(x>0)存在“和諧區(qū)間”

          【答案】D
          【解析】解:A中,當(dāng)x≥0時(shí),f(x)=x2在[0,2]上是單調(diào)增函數(shù),且f(x)在[0,2]上的值域是[0,4],∴存在“和諧區(qū)間”,原命題正確;
          B中,當(dāng)x∈R時(shí),f(x)=2x在[1,2]上是單調(diào)增函數(shù),且f(x)在[1,2]上的值域是[2,4],∴存在“和諧區(qū)間”,原命題正確;
          C中,f(x)= (x>0)是單調(diào)減函數(shù),且f(x)在[1,2]上的值域是[ ,1],∴不存在“和諧區(qū)間”,原命題正確;
          D中,當(dāng)x>0時(shí),f(x)=log2x是單調(diào)增函數(shù),假設(shè)存在[a,b]滿足題意,則f(a)=2a,且f(b)=2b,即log2a=2a,且log2b=2b;
          ∴22a=a,且22b=b,即4a=a,且4b=b;這與函數(shù)的單調(diào)性矛盾,∴假設(shè)不成立,即函數(shù)不存在“和諧區(qū)間”,原命題不正確;
          故選D.
          【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)的值域(求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個最。ù螅⿺(shù),這個數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實(shí)質(zhì)是相同的).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中, , ,且 , , .

          )求證:平面平面

          )求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)點(diǎn)P在曲線 上,點(diǎn)Q在曲線y=ln(2x)上,則|PQ|最小值為(
          A.1﹣ln2
          B.
          C.1+ln2
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)滿足f(x)=f′(1)ex1﹣f(0)x+ x2;
          (1)求f(x)的解析式及單調(diào)區(qū)間;
          (2)若 ,求(a+1)b的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在四棱柱中, 底面,四邊形是邊長為的菱形, 分別是的中點(diǎn),

          (Ⅰ)求證: 平面

          (Ⅱ)求二面角的余弦值;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=(a﹣1)(ax﹣ax)(0<a<1).
          (1)判斷f(x的奇偶性;
          (2)用定義證明f(x)為R上的增函數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】定義:對于函數(shù)f(x),若在定義域內(nèi)存在實(shí)數(shù)x,滿足f(﹣x)=﹣f(x),則稱f(x)為“局部奇函數(shù)”.
          (1)已知二次函數(shù)f(x)=ax2+2x﹣4a(a∈R),試判斷f(x)是否為定義域R上的“局部奇函數(shù)”?若是,求出滿足f(﹣x)=﹣f(x)的x的值;若不是,請說明理由;
          (2)若f(x)=2x+m是定義在區(qū)間[﹣1,1]上的“局部奇函數(shù)”,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】將三顆骰子各擲一次,記事件A=“三個點(diǎn)數(shù)都不同”,B=“至少出現(xiàn)一個6點(diǎn)”,則條件概率P(A|B),P(B|A)分別是(
          A. ,
          B. ,
          C.
          D. ,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知:三棱錐中,側(cè)面垂直底面, 是底面最長的邊;圖1是三棱錐的三視圖,其中的側(cè)視圖和俯視圖均為直角三角形;圖2是用斜二測畫法畫出的三棱錐的直觀圖的一部分,其中點(diǎn)平面內(nèi).

          Ⅰ)請?jiān)趫D2中將三棱錐的直觀圖補(bǔ)充完整并指出三棱錐的哪些面是直角三角形;

          Ⅱ)設(shè)二面角的大小為,求的值;

          求點(diǎn)到面的距離.

          查看答案和解析>>

          同步練習(xí)冊答案