【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(1)證明:PB∥平面AEC;
(2)設(shè)AP=1,AD= ,三棱錐P﹣ABD的體積V=
,求A到平面PBC的距離.
【答案】
(1)證明:設(shè)BD與AC 的交點(diǎn)為O,連結(jié)EO,
∵ABCD是矩形,
∴O為BD的中點(diǎn)
∵E為PD的中點(diǎn),
∴EO∥PB.
EO平面AEC,PB平面AEC
∴PB∥平面AEC;
(2)解:∵AP=1,AD= ,三棱錐P﹣ABD的體積V=
,
∴V= =
,
∴AB= ,PB=
=
.
作AH⊥PB交PB于H,
由題意可知BC⊥平面PAB,
∴BC⊥AH,
故AH⊥平面PBC.
又在三角形PAB中,由射影定理可得:
A到平面PBC的距離 .
【解析】(1)設(shè)BD與AC 的交點(diǎn)為O,連結(jié)EO,通過直線與平面平行的判定定理證明PB∥平面AEC;(2)通過AP=1,AD= ,三棱錐P﹣ABD的體積V=
,求出AB,作AH⊥PB角PB于H,說明AH就是A到平面PBC的距離.通過解三角形求解即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)為定義在R上的偶函數(shù),當(dāng)x≥0時,有f(x+3)=﹣f(x),且當(dāng)x∈[0,3)時,f(x)=log4(x+1),給出下列命題:
①f(2015)>f(2014);
②函數(shù)f(x)在定義域上是周期為3的函數(shù);
③直線x﹣3y=0與函數(shù)f(x)的圖象有2個交點(diǎn);
④函數(shù)f(x)的值域?yàn)閇0,1).
其中不正確的命題個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓關(guān)于直線
對稱的圓為
.
(1)求圓的方程;
(2)過點(diǎn)作直線
與圓
交于
兩點(diǎn),
是坐標(biāo)原點(diǎn),是否存在這樣的直線
,使得在平行四邊形
中
?若存在,求出所有滿足條件的直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+bx+1(a,b∈R且a≠0),F(xiàn)(x)= .
(1)若f(﹣1)=0,且函數(shù)f(x)的值域?yàn)閇0,+∞),求F(x)的解析式;
(2)在(1)的條件下,當(dāng)x∈[﹣2,2]時,g(x)=f(x)﹣kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍;
(3)設(shè)mn<0,m+n>0,a>0,且f(x)是偶函數(shù),判斷F(m)+F(n)是否大于零.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,b=2 ,B=
.
(1)若a=2,求角C;
(2)若D為AC的中點(diǎn),BD= ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“累計(jì)凈化量(CCM)”是空氣凈化器質(zhì)量的一個重要衡量指標(biāo),它是指空氣凈化器從開始使用到凈化效率為時對顆粒物的累計(jì)凈化量(單位:克).根據(jù)國家標(biāo)準(zhǔn),對空氣凈化器的累計(jì)凈化量(CCM)有如下等級劃分:
累計(jì)凈化量(克) | 12以上 | |||
等級 |
已知某批空氣凈化器共臺,其累計(jì)凈化量都分布在區(qū)間
內(nèi),為了解其質(zhì)量,隨機(jī)抽取了
臺凈化器作為樣本進(jìn)行估計(jì),按照
,
,
,
,
均勻分組,其中累計(jì)凈化量在
的所有數(shù)據(jù)有:
,
,
,
,
和
,并繪制了如下頻率分布直方圖.
(1)求的值及頻率分布直方圖中
的值;
(2)以樣本估計(jì)總體,試估計(jì)這批空氣凈化器(共2000臺)中等級為的空氣凈化器有多少臺?
(3)從累計(jì)凈化量在的樣本中隨機(jī)抽取2臺,求恰好有1臺等級為
的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】采用系統(tǒng)抽樣方法從960人中抽取32人做問卷調(diào)查,為此將他們隨即編號為1,2…960,分組后在第一組采用簡單隨機(jī)抽樣的方法抽到的號碼為5,抽到的32人中,編號落入?yún)^(qū)間[1,450]的人做問卷A,編號落入?yún)^(qū)間[451,750]的人做問卷B,其余的人做問卷C,則抽到的32人中,做問卷C的人數(shù)為( )
A.15
B.10
C.9
D.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= x3﹣2ax2+3x(x∈R).
(1)若a=1,點(diǎn)P為曲線y=f(x)上的一個動點(diǎn),求以點(diǎn)P為切點(diǎn)的切線斜率取最小值時的切線方程;
(2)若函數(shù)y=f(x)在(0,+∞)上為單調(diào)增函數(shù),試求滿足條件的最大整數(shù)a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個命題:
(1)命題“若 ,則tanα=1”的逆否命題為假命題;
(2)命題p:x∈R,sinx≤1.則¬p:x0∈R,使sinx0>1;
(3)“ ”是“函數(shù)y=sin(2x+)為偶函數(shù)”的充要條件;
(4)命題p:“x0∈R,使 ”;命題q:“若sinα>sinβ,則α>β”,那么(¬p)∧q為真命題.
其中正確的個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com