日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=ax2+bx+1(a,b∈R且a≠0),F(xiàn)(x)=
          (1)若f(﹣1)=0,且函數(shù)f(x)的值域為[0,+∞),求F(x)的解析式;
          (2)在(1)的條件下,當(dāng)x∈[﹣2,2]時,g(x)=f(x)﹣kx是單調(diào)函數(shù),求實數(shù)k的取值范圍;
          (3)設(shè)mn<0,m+n>0,a>0,且f(x)是偶函數(shù),判斷F(m)+F(n)是否大于零.

          【答案】
          (1)解:∵f(﹣1)=0,

          ∴a﹣b+1=0,①

          ∵函數(shù)f(x)的值域為[0,+∞),

          ∴a>0且判別式△=0,即b2﹣4a=0,②

          由①②得a=1,b=2.

          ∴f(x)=ax2+bx+1=x2+2x+1.

          ∴F(x)=


          (2)解:g(x)=f(x)﹣kx=x2+(2﹣k)x+1,

          函數(shù)的對稱軸為x= ,

          要使函數(shù)g(x)=f(x)﹣kx,在x∈[﹣2,2]上是單調(diào)函數(shù),

          則區(qū)間[﹣2,2]必在對稱軸的一側(cè),

          ,

          解得k≥6或k≤﹣2.

          即實數(shù)k的取值范圍是k≥6或k≤﹣2


          (3)解:∵f(x)是偶函數(shù),∴f(﹣x)=f(x),

          即ax2﹣bx+1=ax2+bx+1,

          ∴2bx=0,解得b=0.

          ∴f(x)=ax2+1.

          ∴F(x)=

          ∵mn<0,m+n>0,a>0,

          不妨設(shè)m>n,則m>0,n<0,

          ∴F(m)+F(n)=am2+1﹣an2﹣1=a(m2﹣n2)=a(m﹣n)(m+n),

          ∵m+n>0,a>0,m﹣n>0,

          ∴F(m)+F(n)=a(m﹣n)(m+n)>0


          【解析】(1)利用f(﹣1)=0和函數(shù)f(x)的值域為[0,+∞),建立方程關(guān)系,即可求出a,b,從而確定F(x)的表達(dá)式;(2)在(1)的條件下,當(dāng)x∈[﹣2,2]時,利用g(x)=f(x)﹣kx的單調(diào)區(qū)間與對稱軸之間的關(guān)系建立不等式進(jìn)行求解即可.(3)利用mn<0,m+n>0,a>0,且f(x)是偶函數(shù),得到b=0,然后判斷F(m)+F(n)的取值.
          【考點精析】認(rèn)真審題,首先需要了解函數(shù)單調(diào)性的判斷方法(單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較),還要掌握函數(shù)的奇偶性(偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱)的相關(guān)知識才是答題的關(guān)鍵.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知命題p:方程x2﹣4x+m=0有實根,命題q:﹣1≤m≤5.若p∧q為假命題,p∨q為真命題,求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】二次函數(shù)f(x)=ax2+2a是區(qū)間[﹣a,a2]上的偶函數(shù),又g(x)=f(x﹣1),則g(0),g( ),g(3)的大小關(guān)系是(
          A.g( )<g(0)<g(3)
          B.g(0)<g( )<g(3)??
          C.g( )<g(3)<g(0)
          D.g(3)<g( )<g(0)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知某中學(xué)高三文科班學(xué)生共有800人參加了數(shù)學(xué)與地理的水平測試,學(xué)校決定利用隨機(jī)數(shù)表法從中抽取100人進(jìn)行成績抽樣調(diào)查,先將800人按001,002,…,800進(jìn)行編號

          (1)如果從第8行第7列的數(shù)開始向右讀,請你依次寫出最先檢查的3個人的編號;(下面摘取了第7行到第9行)

          84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76

          63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79

          33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54

          (2)抽取的100人的數(shù)學(xué)與地理的水平測試成績?nèi)缦卤恚?/span>

          成績分為優(yōu)秀、良好、及格三個等級;橫向,縱向分別表示地理成績與數(shù)學(xué)成績,例如:表中數(shù)學(xué)成績?yōu)榱己玫墓灿?/span>.

          ①若在該樣本中,數(shù)學(xué)成績優(yōu)秀率是30%,求的值:

          人數(shù)

          數(shù)學(xué)

          優(yōu)秀

          良好

          及格

          地理

          優(yōu)秀

          7

          20

          5

          良好

          9

          18

          6

          及格

          4

          ②在地理成績及格的學(xué)生中,已知, ,求數(shù)學(xué)成績優(yōu)秀的人數(shù)比及格的人數(shù)少的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】各項為正數(shù)的數(shù)列{an}的前n項和為Sn , 且滿足:Sn= an2+ an+ (n∈N*
          (1)求an
          (2)設(shè)數(shù)列{ }的前n項和為Tn , 證明:對一切正整數(shù)n,都有Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱臺形玻璃容器Ⅱ的高均為32cm,容器Ⅰ的底面對角線AC的長為10cm,容器Ⅱ的兩底面對角線的長分別為14cm62cm.分別在容器Ⅰ和容器Ⅱ中注入水,水深均為12cm現(xiàn)有一根玻璃棒l其長度為40cm.(容器厚度、玻璃棒粗細(xì)均忽略不計)

          (1)將放在容器Ⅰ中的一端置于點A處,另一端置于側(cè)棱上,沒入水中部分的長度;

          (2)將放在容器Ⅱ中,的一端置于點E處,另一端置于側(cè)棱上,求沒入水中部分的長度.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.

          (1)證明:PB∥平面AEC;
          (2)設(shè)AP=1,AD= ,三棱錐P﹣ABD的體積V= ,求A到平面PBC的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】

          已知函數(shù),

          (1)若曲線在點處的切線與直線垂直,求的值;

          (2)若存在極小值時,不等式恒成立,求實數(shù)的取值范圍;

          (3)當(dāng)時,如果存在兩個不相等的正數(shù),使得,求證:

          請考生在第22、23兩題中任選一題作答.注意:只能做所選定的題目.如果多做,則按所做的第一個題目計分.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)(x∈R)滿足f(﹣x)=2﹣f(x),若函數(shù)y= 與y=f(x)圖象的交點為(x1 , y1),(x2 , y2),…,(xm , ym),則 (xi+yi)=(
          A.0
          B.m
          C.2m
          D.4m

          查看答案和解析>>

          同步練習(xí)冊答案